首页> 外文会议>11th fuel cell science, engineering, and technology conference 2013 >NON-ISOTHERMAL HYDRODYNAMIC MODELLING OF THE FLOWING ELECTROLYTE CHANNEL IN A FLOWING ELECTROLYTE-DIRECT METHANOL FUEL CELL
【24h】

NON-ISOTHERMAL HYDRODYNAMIC MODELLING OF THE FLOWING ELECTROLYTE CHANNEL IN A FLOWING ELECTROLYTE-DIRECT METHANOL FUEL CELL

机译:流动的直接甲醇溶液燃料电池中流动通道的非等温流体动力学模拟

获取原文
获取原文并翻译 | 示例

摘要

The performance of a direct methanol fuel cell (DMFC) can be significantly reduced by methanol crossover. One method to reduce methanol crossover is to utilize a flowing electrolyte channel. This is known as a flowing electrolyte-direct methanol fuel cell (FE-DMFC). In this study, recommendations for the improvement of the flowing electrolyte channel design and operating conditions are made using previous modelling studies on the fluid dynamics in the porous domain of the flowing electrolyte channel, and on the performance of a ID isothermal FE-DMFC incorporating multiphase flow, in addition to modelling of the non-isothermal effects on the fluid dynamics of the FE-DMFC flowing electrolyte channel. The results of this study indicate that temperature difference between flowing electrolyte inflow and the fuel cell have negligible hydrodynamic implications, except that higher fuel cell temperatures reduce pressure drop. Reducing porosity and increasing permeability is recommended, with a porosity of around 0.4 and a porous material microstructure typical dimension around 60-70 um being potentially suitable values for achieving these goals.
机译:直接甲醇燃料电池(DMFC)的性能会因甲醇交换而大大降低。减少甲醇穿越的一种方法是利用流动的电解质通道。这被称为直接电解质流动甲醇燃料电池(FE-DMFC)。在本研究中,使用先前的模型研究对流动电解质通道的多孔域中的流体动力学以及结合了多相的ID等温FE-DMFC的性能进行了建模研究,提出了改善流动电解质通道设计和操作条件的建议除了模拟非等温效应对FE-DMFC流动电解质通道的流体动力学的影响之外,这项研究的结果表明,流动的电解液流入与燃料电池之间的温差对流体力学的影响可忽略不计,除了更高的燃料电池温度可以降低压降外。建议降低孔隙率并增加渗透率,孔隙率应为0.4左右,而多孔材料微观结构的典型尺寸通常约为60-70 um,这可能是实现这些目标的合适值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号