首页> 外文会议>The 2001 ASME International Mechanical Engineering Congress and Exposition, 2001, Nov 11-16, 2001, New York, New York >PARALLELIZED DSMC MODELING OF TRANSPORT NEAR LIQUID-VAPOR INTERFACES IN A MICRO BUBBLE HEAT PIPE
【24h】

PARALLELIZED DSMC MODELING OF TRANSPORT NEAR LIQUID-VAPOR INTERFACES IN A MICRO BUBBLE HEAT PIPE

机译:微泡热管中液体-蒸汽界面附近运输的分布式DSMC建模

获取原文
获取原文并翻译 | 示例

摘要

The investigation summarized in this report explores a new efficient computational method for predicting heat and mass transfer near liquid-vapor interface in a micro bubble heat pipe. In the micro bubble heat pipe considered here, net vaporization occurs over heated portions of the interface and net condensation occurs on cooled portions of the interface. A dynamic equilibrium is reached when the condensation just balances the vaporization. The dimensions of the micro heat pipe may be comparable to the mean free path of the inside gas molecules. Since the transport may then fall in the transition regime between continuum and free molecular transport, a stochastic modeling scheme, the direct simulation Monte Carlo (DSMC), is used to simulate the transport by modeling the molecular transport from the evaporation end to the condensation end. A new treatment of the boundary conditions at the bubble interface is used which properly accounts for the energy and mass balance at the interface as well as thermodynamic requirements that must be imposed there. Parallel computing is successfully applied in this simulation by parallelizing the originally sequential DSMC scheme to shorten the otherwise over 10 hours of computation running time. Different domain decomposition strategies are applied to the parallelization. Dynamic load balancing is realized to further improve performance. A nearly linear speedup is found in the tests with up to 64 parallel processors of T3E Cray super computer, despite the huge amount of message communication among processors in this 3-D problem. Simulation predictions of temperature, pressure, molecular density profiles, and molecular flow speed profile from the simulation are shown to agree with the theoretical analysis of the resulting compressible flow. The results provide insight into the mechanisms of transport in the micro bubble heat pipe and parametric effects on its heat transfer capacity.
机译:本报告中总结的研究探索了一种新的有效计算方法,用于预测微气泡热管中液-气界面附近的传热和传质。在这里考虑的微泡热管中,净气化发生在界面的加热部分上,而净冷凝发生在界面的冷却部分上。当冷凝只是平衡汽化时,就达到了动态平衡。微型热管的尺寸可以与内部气体分子的平均自由程相当。由于迁移可能随后落入连续分子迁移和自由分子迁移之间的过渡状态,因此采用随机建模方案直接模拟蒙特卡洛(DSMC),通过对从蒸发端到缩合端的分子迁移进行建模来模拟迁移。对气泡界面处的边界条件进行了新的处理,该方法适当地考虑了界面处的能量和质量平衡以及必须在此处施加的热力学要求。通过并行化最初的顺序DSMC方案以缩短原本超过10个小时的计算运行时间,并行计算已成功应用于此仿真中。将不同的域分解策略应用于并行化。实现动态负载平衡以进一步提高性能。尽管在此3-D问题中处理器之间的消息通信量很大,但在使用多达64个T3E Cray超级计算机的并行处理器的测试中发现了几乎线性的加速。结果表明,对温度,压力,分子密度分布和分子流速分布的模拟预测与所得可压缩流的理论分析吻合。结果提供了对微泡热管中的传输机理及其传热能力的参数影响的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号