【24h】

MULTI-INPUT MULTI-OUTPUT MODAL TESTING TECHNIQUES FOR A GOSSAMER STRUCTURE

机译:高斯结构的多输入多输出模态测试技术

获取原文
获取原文并翻译 | 示例

摘要

Inflated space-based structures have become popular over the past three decades due to their minimal launch-mass and launch-volume. Once inflated, these space structures are subject to vibrations induced by guidance systems and space debris as well as from variable amounts of direct sunlight. Understanding the dynamic behavior of space-based structures is critical to ensuring their desired performance. Inflated materials, however, pose special problems when testing and trying to control their vibrations because of their lightweight, flexibility, and high damping. Traditional modal testing techniques, based on single-input, single-output (SISO) methods, are limited for a variety of reasons when compared to their multiple counterparts. More specifically, SISO modal testing techniques are unable to reliably distinguish between pairs of modes that are inherent to axi-symmetric structures (such as an inflated torus, a critical component of a gossamer spacecraft). Furthermore, it is questionable as to whether a single actuator could reliably excite the global modes of a true gossamer craft, such as a 25 m diameter torus. In this study, we demonstrate the feasibility of using a multiple-input multiple-output (MIMO) modal testing technique on an inflated torus. In particular, the refined modal testing methodology focuses on using Macro-Fiber Composite (MFC~(~R)) patches (from NASA Langley Research Center) as both actuators and sensors. MFC~(~R) patches can be integrated in an unobtrusive way into the skin of the torus, and can be used to find a gossamer structure's modal parameters. Furthermore, MFC~(~R) excitation produces less interference with suspension modes of the free-free torus than excitations from a conventional shaker. The use of multiple actuators is shown to properly excite the global modes of the structure and distinguish between pairs of modes at nearly identical resonant frequencies. Formulation of the MIMO test as well as the required postprocessing techniques are explained and successfully applied to an inflated Kapton~(~R) torus.
机译:在过去的三十年中,由于其最小的发射质量和发射量,膨胀的空基结构已变得很流行。一旦膨胀,这些空间结构就会受到制导系统和空间碎片以及各种量的直射阳光引起的振动的影响。了解空基结构的动态行为对于确保其所需的性能至关重要。但是,由于充气材料的重量轻,柔韧性好,阻尼高,因此在测试和尝试控制其振动时会遇到一些特殊问题。与多种方法相比,基于单输入单输出(SISO)方法的传统模态测试技术由于各种原因而受到限制。更具体地说,SISO模态测试技术无法可靠地区分轴对称结构(例如,膨胀的圆环,是游丝飞船的关键部件)固有的模式对。此外,对于单个致动器是否能够可靠地激发真正的游丝飞行器的整体模式(例如直径为25 m的圆环)存在疑问。在这项研究中,我们证明了在充气圆环上使用多输入多输出(MIMO)模态测试技术的可行性。特别是,改进的模态测试方法着重于使用宏观纤维复合材料(MFC〜(〜R))贴片(来自NASA Langley研究中心)作为致动器和传感器。 MFC〜(〜R)贴片可以以不显眼的方式集成到圆环的皮肤中,并且可以用于查找蛛丝结构的模态参数。此外,与来自常规振动器的激发相比,MFC_(〜R)激发对自由圆环的悬浮模式产生的干扰更少。示出了使用多个致动器来适当地激发结构的整体模式并在几乎相同的谐振频率下区分成对的模式。解释了MIMO测试的公式以及所需的后处理技术,并将其成功地应用于膨胀的Kapton〜(R)圆环。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号