【24h】

Streamlining of the Radial Inlet Design Process for Centrifugal Compressors

机译:简化离心压缩机径向进气口设计过程

获取原文
获取原文并翻译 | 示例

摘要

A radial compressor inlet represents an asymmetric and highly complex flow path, with high potential for flow disturbance. Due to the large computational resources and long lead times required for CFD analysis of such components, this resource has historically been reserved for conceptual or prototype designs. In the production environment, where compressor internals are often customized to a particular application, designers generally rely on geometric analysis of the flowpath. Low priority historically given to centrifugal inlet design is adequately illustrated in "mud etching" of the flow field in a retrofitted radial compressor inlet. An estimate of the potential for efficiency gain through inlet optimization, based on CFD predicted loss coefficient, is presented. It is noted that poor exit flow profiles can negatively impact performance, as well. Ill effects may include efficiency loss in downstream components, mechanical vibration, and compressor control issues. With continual improvement in CFD processing speed, the prospect of applying CFD based optimization techniques to production radial inlet designs becomes more feasible. In this investigation, CFD analysis is performed on an existing radial inlet design and validated with data from a flow visualization test rig. The subject inlet design is subsequently optimized through CFD analysis, with detailed attention being given to the impact of adjusting various geometric characteristics. A number of independent geometric parameters, which are determined to have significant impact on loss coefficient, are condensed into an optimization parameter. This optimization parameter serves as a preliminary indicator of design quality. Alternative brute force design methods are time prohibitive and may not provide the designer with feedback required to effectively alter geometry. Details of the CFD modeling and subsequent validation testing of the baseline inlet design are given. CFD results for a variety of modified inlet designs are presented. An overview of the optimization parameter and its application to a new radial inlet design are also presented. The potential for such an optimization parameter to limit design iteration is illustrated. Although additional refinement is suggested, the subject optimization parameter shows potential to direct the designer away from low efficiency designs.
机译:径向压缩机入口代表不对称且高度复杂的流路,极有可能引起流扰。由于此类组件的CFD分析需要大量的计算资源和较长的交货时间,因此该资源历来被保留用于概念设计或原型设计。在生产环境中,通常针对特定应用定制压缩机内部零件,设计人员通常依赖于流路的几何分析。改造后的径向压缩机进口中流场的“泥浆腐蚀”已充分说明了离心泵入口设计历来的低优先级。提出了基于CFD预测损失系数的通过进气优化实现效率提升的潜力估算。注意,不良的出口流量曲线也会对性能造成负面影响。不良影响可能包括下游组件的效率损失,机械振动和压缩机控制问题。随着CFD处理速度的不断提高,将基于CFD的优化技术应用于生产径向入口设计的前景变得更加可行。在这项研究中,对现有的径向进气口设计进行了CFD分析,并使用了流量可视化测试装置的数据进行了验证。随后,通过CFD分析对目标进气口设计进行优化,并特别注意调整各种几何特征的影响。将确定对损耗系数有重大影响的许多独立几何参数浓缩为优化参数。此优化参数可作为设计质量的初步指标。替代的蛮力设计方法禁止时间,并且可能无法为设计人员提供有效更改几何形状所需的反馈。给出了CFD建模的详细信息以及基线进气口设计的后续验证测试。给出了各种改进的进样口设计的CFD结果。还介绍了优化参数的概述及其在新的径向进气口设计中的应用。说明了这种优化参数限制设计迭代的可能性。尽管建议进行其他改进,但主题优化参数显示出指导设计师远离低效率设计的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号