【24h】

EXPERIMENTAL INVESTIGATION AND NUMERICAL SIMULATION OF ROLL COMPACTION OF POWDERS

机译:粉末轧制的实验研究与数值模拟

获取原文
获取原文并翻译 | 示例

摘要

Roll compaction is often used in the production of metal strip and in food and pharmaceutical industries. While it is possible to achieve the optimum process performance using extensive experimentation, this approach results in an increase of operating cost and time, especially with higher value materials and more demanding quality requirements. Alternatively mathematical modeling can provide necessary information for proper equipment and process design. Existing theoretical techniques date back to the early Johanson theory of compaction of granular solids (1965) and a large set of slab method-based analysis performed in the former Soviet Union in the 1970s and 80s. The former utilizes a primitive model for the constitutive behavior of materials, while the latter is often based on questionable assumptions on frictional conditions and utilizes constitutive models that are appropriate for highly cohesive high density porous media (a symmetric ellipse for yield locus). In our work, (ⅰ) we employed an instrumented roller compactor to collect experimental data on pressure distribution, roll force and torque during the rolling of a pharmaceutical, (ⅱ) powder we develop a slab method based on a porous plasticity model with consistent frictional conditions, and (ⅲ) we analyzed rolling using ALE finite element method using a Drucker-Prager/cap model. A comparison of the numerical results with the experimental data clearly demonstrates the need for (ⅰ) proper characterization of the frictional interaction between the powder and the roll and (ⅱ) better experimental data for calibration of constitutive models in intermediate triaxialities that dominate this process.
机译:轧辊压实通常用于金属带材的生产以及食品和制药行业。尽管可以通过广泛的实验来获得最佳的过程性能,但是这种方法会导致运行成本和时间的增加,尤其是在使用更高价值的材料和更高质量要求的情况下。另外,数学建模可以为适当的设备和过程设计提供必要的信息。现有的理论技术可以追溯到Johanson早期的粒状固体压实理论(1965年)和在1970年代和80年代在前苏联进行的大量基于平板方法的分析。前者对材料的本构行为采用原始模型,而后者通常基于对摩擦条件的可疑假设,并采用适用于高凝聚力高密度多孔介质(屈服点为对称椭圆形)的本构模型。在我们的工作中,(ⅰ)我们使用了仪器化的压路机来收集关于药物在轧制过程中压力分布,轧制力和扭矩的实验数据,(ⅱ)粉末,我们基于多孔塑性模型开发了具有一致摩擦力的平板方法(ⅲ)我们使用Drucker-Prager / cap模型使用ALE有限元方法分析了轧制。数值结果与实验数据的比较清楚地表明,需要(ⅰ)正确表征粉末与轧辊之间的摩擦相互作用,并且(ⅱ)需要更好的实验数据来校准主导该过程的中间三轴本构模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号