首页> 外文会议>2006 SPE Annual Technical Conference and Exhibition (ATCE 2006) >Modeling, Upscaling, and History Matching Thin, Irregularly-Shaped Flow Barriers:A Comprehensive Approach for Predicting Reservoir Connectivity
【24h】

Modeling, Upscaling, and History Matching Thin, Irregularly-Shaped Flow Barriers:A Comprehensive Approach for Predicting Reservoir Connectivity

机译:建模,扩展和历史匹配薄,不规则形状的流量障碍:预测储层连通性的综合方法

获取原文

摘要

Accurate modeling of flow path connectivity is critical toreservoir flow performance prediction. Flow pathconnectivity is controlled by the complex shape, extent andspatial relationships between pay intervals, their intersectionwith wells, and the existence of flow barriers between wells.This reservoir heterogeneity can be captured in a flowsimulation model as facies patterns among cells and aseffective properties within cells (porosity and permeability).However, fine-scale, irregularly-shaped flow barriers betweencells cannot be accurately represented with pixel-basedmodeling techniques.To preserve these important fine-scale geological features atthe flow simulation block scale, an additional modelingvariable is introduced as the edge of a model cell. This celledge is a continuous or categorical value associated with thecell face and is defined in conjunction with the cell centeredproperty which is often reserved for facies types and/orpetrophysical properties. An edge model is created thatcaptures the facies and edge properties as a vector ofinformation at each cell location. For the flow simulationmodel, the edge properties are easily translated intotransmissibility multipliers.Using the example of 3D shale-drapes attached to channelsandbodies in a deep water depositional setting, amethodology is presented in which these shale drapes areaccurately upscaled and history matched to production datawhile maintaining the geological concept that describes thedrape geometry. The perturbation parameter in historymatching is the continuity of the shales as an edge property.More generally, this coupled modeling of cell-center and celledgeallows for more flexible reservoir modeling, opening upthe potential for modeling and history matching complexgeological features effectively at the scale that they arerelevant, without additional computational cost of flowsimulation.
机译:流道连通性的准确建模对于储层流动性能预测至关重要。流动路径的连通性受产层之间复杂的形状,范围和空间关系,与井的相交以及井之间的流动障碍的存在所控制。这种储层非均质性可以在流动模拟模型中捕获为单元间的相态模式和单元内的无效性质(然而,基于像素的建模技术无法精确地表示单元之间的细尺度,不规则形状的流动障碍。为了在流动模拟区块规模上保留这些重要的细尺度地质特征,引入了附加的建模变量作为边缘模型单元的位置。该单元边缘是与单元面相关联的连续值或分类值,并与通常以相类型和/或岩石物理性质保留的单元中心属性一起定义。创建一个边缘模型,该模型捕获相和边缘属性作为每个单元位置处的信息向量。对于流动模拟模型,边缘属性很容易转换为透射率乘数。以深水沉积环境中附着在通道和主体上的3D页岩垂褶为例,提出了一种方法学,其中将这些页岩垂褶准确地放大了规模,并将历史与生产数据匹配,同时保持了描述悬垂几何的地质概念。历史匹配中的扰动参数是页岩作为边缘属性的连续性。更普遍的是,这种对单元中心和单元边缘的耦合建模可以更灵活地进行储层建模,从而为在复杂的地质特征上有效地建模和历史匹配提供了潜力相关,无需额外的流量模拟计算成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号