首页> 外文会议>2011 International conference on semiconductor technology for ultra large scale integrated circuits and thin film transistors (ULSIC vs. TFT) >Understanding the Switching Mechanism in RRAM Devices and the Dielectric Breakdown of Ultrathin High-k Gate Stacks from First Principles Calculations
【24h】

Understanding the Switching Mechanism in RRAM Devices and the Dielectric Breakdown of Ultrathin High-k Gate Stacks from First Principles Calculations

机译:从第一原理计算中了解RRAM器件的开关机制和超薄高k栅极堆叠的介电击穿

获取原文
获取原文并翻译 | 示例

摘要

RRAM devices received increased interest lately as advanced non-volatile memory technologies in terms of low operating power, high density, better non-volatility, fast switching speed, and compatibility with conventional CMOS process. However, up to date the fundamental physical principles controlling the switching are not well understood. We have employed first-principles simulations based on density functional theory (DFT) to elucidate the effect of oxygen vacancy defects on the electronic structure of rutile TiO_2 and NiO using the local density approximation with correction of on-site Coulomb interactions (LDA+U). The vacancy filament induces several defect states within the band gap, which can lead to the defect-assisted electron transport and account for on-state low resistance conduction in bulk rutile TiO_2 and NiO. For CMOS devices on the other hand the reliability of the gate stack is becoming a significant challenge with the continuous scaling of transistors, due to the ultrathin oxides and defects in the gate stack. The degradation of the gate oxides has been observed under electrical stress, due to traps generated by defects, e.g. oxygen vacancies present in these materials. First principles methods based on density functional theory are used to determine the location of the defect states in the band gap when these defects are at the various interfaces of the gate stack and how they contribute to the oxide breakdown in ultrathin gate stacks.
机译:最近,由于先进的非易失性存储技术,RRAM器件在低工作功率,高密度,更好的非易失性,快速切换速度以及与常规CMOS工艺的兼容性方面受到越来越多的关注。然而,迄今为止,尚未很好地理解控制开关的基本物理原理。我们采用基于密度泛函理论(DFT)的第一性原理模拟,通过局部密度近似和现场库仑相互作用(LDA + U)的校正,阐明了氧空位缺陷对金红石TiO_2和NiO的电子结构的影响。 。空位细丝在带隙内引起几种缺陷状态,这可以导致缺陷辅助的电子传输,并解释了块状金红石TiO_2和NiO中的导通状态低电阻传导。另一方面,由于超薄氧化物和栅极叠层中的缺陷,对于CMOS器件而言,随着晶体管的连续缩放,栅极叠层的可靠性正成为一项重大挑战。由于缺陷,例如由缺陷产生的陷阱,在电应力下已经观察到栅氧化物的降解。这些材料中存在氧空位。当这些缺陷位于栅堆叠的各个界面时,基于密度泛函理论的第一原理方法可用于确定带隙中缺陷状态的位置,以及它们如何导致超薄栅堆叠中的氧化物击穿。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号