【24h】

Reflective geometrie phase in liquid crystal photonics

机译:液晶光子学中的反射几何相

获取原文
获取原文并翻译 | 示例

摘要

Summary form only given. Besides the path-length dependent phase (dynamic phase) that light accumulate during its propagation, a polarized optical wave can experience a phase-shift that is path-independent, also known as geometric phase. The latter emerges under cyclic transformation of degrees of freedom of light such as: propagation direction, Rytov-Vladimirskii-Berry phase; and polarization, Pancharatnam-Berry (PB) phase [1]. To obtain the PB phase, the polarization is modulated using wave plates with spatially varying optical axis. For half-wave plates with optical axis at angle θ, and incident circular polarized light of handedness σ, the phase is known to be 2σθ [2, 3]. These spatially varying wave plates can be realized using sub-wavelength gratings [2] or liquid crystals [3]. After the seminal paper of Marrucci et al. [3], a wide range of Pancharatnam-Berry optical elements (PBOEs) with advanced phase shaping functionalities were demonstrated using statically structured liquid crystalline media [3, 4]. Dynamical PBOEs device have also been developed using electro-optical liquid crystals valves [5, 6], and were used to generate singular optical beams. In the above cases of PB phase, light still need to traverse the bulk of the medium.By using twisted Bragg reflectors such as cholesteric liquid crystals (CLCs), we demonstrate a novel type of geometric phase where the interaction light and matter is limited to the surface of reflection and the polarization state is unchanged. Even though planar CLC layers reflect circular polarized light with the same handedness as the helix without changing the polarization state, we demonstrated that reflected light exhibit a geometric phase ΦB 8 = 2σ8, where 8 is the angle of the optical axis at the input face and σ the handedness of the polarization. This result has been validated numerically (Fig. 1 (a)), and experimentally with planar CLC reflector with piecewise uniform optical axis at the input interface (Fig. (b-d)).
机译:仅提供摘要表格。除了光在传播过程中累积的与路径长度有关的相位(动态相位)之外,偏振光波还会经历与路径无关的相移,也称为几何相位。后者在光自由度的循环变换下出现,例如:传播方向,Rytov-Vladimirskii-Berry相位;和极化,Pancharatnam-Berry(PB)相[1]。为了获得PB相位,使用具有在空间上变化的光轴的波片来调制偏振。对于光轴角度为θ且入射角为σ的圆偏振光的半波片,已知相位为2σθ[2,3]。这些空间变化的波片可以使用亚波长光栅[2]或液晶[3]来实现。在Marrucci等人的开创性论文之后。 [3],使用静态结构化液晶介质证明了具有先进的相位整形功能的各种Pancharatnam-Berry光学元件(PBOE)[3,4]。动态PBOEs装置也已使用电光液晶阀开发[5,6],并用于产生奇异光束。在上述PB相的情况下,光仍然需要遍历大量介质。通过使用扭曲的布拉格反射器(如胆甾型液晶(CLC)),我们演示了一种新型的几何相,其中光和物质的相互作用限于反射面和偏振态不变。即使平面CLC层以与螺旋线相同的方向反射了圆偏振光而没有改变偏振态,我们也证明了反射光表现出几何相位ΦB8 =2σ8,其中8是入射面的光轴角度,而σ极化的顺手性。该结果已通过数值验证(图1(a)),并在实验中使用了平面CLC反射器,在输入界面处具有分段均匀的光轴(图(b-d))。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号