【24h】

Possibilities of Zinc Electrowinning from Molten Chloride Salts

机译:从熔融氯化物盐中电解沉积锌的可能性

获取原文
获取原文并翻译 | 示例

摘要

An extensive literature and experimental study was carried out on the electrowinning of zinc from a ZnCl_2-NaCl-KCl melt at 450℃. With reference to zinc electrolysis from a sulphate medium, a substantial saving on the energy consumption may be achieved because ZnCl_2 has a considerably lower decomposition potential than ZnSO_4. In addition, high current densities can be employed, because of the high conductivity of molten salts and the high solubility of ZnCl_2 in these electrolytes. The cathodic current density is limited only by the operating temperature and the composition of the electrolyte, because this electrolyte will solidify locally at the cathode due to depletion of ZnCl_2. The energy consumption seems to be mainly determined by the anodic production of chlorine. The current densities employed in the experimental work reached 15 kA-m~(-2), resulting in the formation of large volumes of gas. It was found that altering the anode material from glassy carbon to different types of graphite caused a major improvement. The bubble layer structures; e.g., bubble diameter and bubble layer thickness, changed significantly when using a rougher material. The results of this research were compared to the available literature. Large disagreements in the determination of the energy consumption were found. The poorly defined anode areas and anodic current densities appear to be the main cause for the disagreements. Values between 1.8 to 8.8 kWh.kg~(-1) have been reported on in the literature.
机译:进行了广泛的文献研究和实验研究,研究了在450℃下从ZnCl_2-NaCl-KCl熔体中电解锌的方法。参照从硫酸盐介质中电解锌,由于ZnCl_2的分解电位比ZnSO_4的分解电位低得多,因此可以大大节省能耗。另外,由于熔融盐的高电导率和ZnCl 2在这些电解质中的高溶解度,因此可以采用高电流密度。阴极电流密度仅受操作温度和电解质组成的限制,因为由于ZnCl_2的耗尽,该电解质将在阴极局部固化。能源消耗似乎主要取决于氯的阳极产生。实验工作中使用的电流密度达到15 kA-m〜(-2),导致大量气体的形成。发现将阳极材料从玻璃碳改变为不同类型的石墨引起了重大改进。气泡层结构;当使用较粗糙的材料时,气泡直径和气泡层厚度会发生很大变化。这项研究的结果与现有文献进行了比较。发现在确定能耗方面存在很大分歧。阳极区域和阳极电流密度的定义不当似乎是造成分歧的主要原因。在文献中已经报道了在1.8至8.8kWh.kg〜(-1)之间的值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号