【24h】

SUB-MICRORADIAN POINTING FOR FREE-SPACE OPTICAL COMMUNICATIONS

机译:亚微米级点的自由空间光学通信

获取原文
获取原文并翻译 | 示例

摘要

NASA/JPL has been developing technologies for a novel and unified approach to point a laser beam from deep space with sub-micro-radian precision for optical communication systems. The approach is based on using high bandwidth in-ertial sensors to compensate for jitter excursions caused by spacecraft vibrations. This use of high bandwidth inertial sensors enables the implementation of laser communication links anywhere within the solar system (and even beyond). A widely accepted scheme for accomplishing the detection, tracking, and pointing function (required in free-space optical communications) is to split a fraction of a received uplink beacon signal and direct it onto a focal plane array (FPA) detector. The motion of the focal spot on the FPA is tracked to accurately point the downlink data signal to the Earth receiving station. For deep space links, the historical approach to compensate for spacecraft vibrations and dead-band excursions has been to close a high-bandwidth pointing-control-loop using optical-tracking (> 500 Hz). But, this method required the use of a separate uplink beacon (laser or Earth image). However, studies have shown that using these optical-tracking references become limited in tracking bandwidth in deep space applications, because of the small amount of signal reaching the spacecraft. Our recent analysis and simulations indicate that, by augmenting the current architecture (celestial optical tracking) through the use of high rate inertial sensors (gyros, accelerometers, rate sensors), the tracking and pointing performance will be improved to the sub-micro-radian level. Analogous to an attitude and control subsystem, the spacecraft motion is measured using the gyros, and this measurement is used to correct instrument pointing. Optical updates are then made infrequently to correct for the low frequency inertial sensor drift. Since optical measurements are no longer needed at the rate required to close the pointing compensation loop, such a scheme allows for a significant reduction of the required tracking update rate. Furthermore, this technique enables the use of dimmer stars (and/or a dim uplink laser). Therefore, combined with a low rate, high accuracy optical tracker, these inertial sensors can be successfully used to compensate for jitter, to close the control loop and to point to a receiving station with sub-micro-radian accuracy. This presentation will cover innovative hardware, algorithms, architectures, techniques and recent laboratory results that are applicable to all deep space optical communication links.
机译:NASA / JPL一直在开发一种新颖且统一的技术,以深亚微米的精度将来自深空的激光束指向光通信系统。该方法基于使用高带宽惯性传感器来补偿由航天器振动引起的抖动偏移。高带宽惯性传感器的这种使用可以在太阳系内任何地方(甚至更远)实现激光通信链路。实现检测,跟踪和指向功能(在自由空间光通信中需要)的一种广泛接受的方案是将接收的上行信标信号的一部分进行拆分,然后将其定向到焦平面阵列(FPA)检测器上。跟踪FPA上焦点的运动,以将下行链路数据信号准确指向地球接收站。对于深空链路,补偿航天器振动和死区偏移的历史方法是使用光学跟踪(> 500 Hz)来关闭高带宽指向控制环。但是,此方法需要使用单独的上行链路信标(激光或地球图像)。但是,研究表明,由于到达航天器的信号量少,因此在深空应用中使用这些光学跟踪参考物会限制跟踪带宽。我们最近的分析和模拟表明,通过使用高速率惯性传感器(陀螺仪,加速度计,速率传感器)增强当前架构(天体光学跟踪),跟踪和指向性能将提高至亚微弧度水平。类似于姿态和控制子系统,使用陀螺仪测量航天器的运动,该测量结果用于校正仪器指向。然后不经常进行光学更新,以校正低频惯性传感器的漂移。由于不再需要以关闭指向补偿环路所需的速率进行光学测量,因此这种方案可以显着降低所需的跟踪更新速率。此外,该技术使得能够使用较暗的恒星(和/或昏暗的上行链路激光)。因此,结合低速率,高精度光学跟踪器,这些惯性传感器可以成功地用于补偿抖动,闭合控制环路并以亚微弧度精度指向接收站。本演讲将涵盖适用于所有深空光通信链路的创新硬件,算法,体系结构,技术和最新实验室结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号