【24h】

INVESTIGATION ON HIGH ENERGY DENSITY MATERIALS UTILIZING BIOLOGICAL TRANSPORT MECHANISMS

机译:利用生物运输机制研究高能密度材料

获取原文
获取原文并翻译 | 示例

摘要

Biological systems such as plants produce large deformations due to the conversion of chemical energy to mechanical energy. These chemomechanical energy conversions are controlled by the transport of charge and fluid across permeable membranes within the cellular structure of the biological system. In this paper we analyze the potential for using biological transport mechanisms to produce materials with controllable actuation properties. An energetics analysis is performed to quantify the relationship between the introduction of chemical energy in the form of ATP to the resulting osmotic pressure variation within an enclosed membrane. Our analysis demonstrates that pressure variations of between 5 and 15 MPa are achievable. The pressure variations are then coupled to a finite etement analysis to determine the ability of organized arrays to produce extensional and bending actuation in thin membranes. Our analysis demonstrates that internal pressure variations on the order of 10 MPa can produce actuation materials with extensional energy density on the order of 100 kJ/m~3 and bending energy density on the order of 10 kJ/m~3.
机译:由于化学能转化为机械能,植物等生物系统会产生较大的变形。这些化学机械能转换是通过电荷和流体在生物系统的细胞结构内穿过可渗透膜的传输来控制的。在本文中,我们分析了利用生物转运机制生产具有可控驱动特性的材料的潜力。进行能量学分析以量化以ATP形式引入的化学能与封闭膜内所产生的渗透压变化之间的关系。我们的分析表明,可以实现5到15 MPa之间的压力变化。然后将压力变化与有限元素分析耦合,以确定有组织的阵列在薄膜中产生拉伸和弯曲驱动的能力。我们的分析表明,内部压力变化大约为10 MPa时,可以产生拉伸能量密度大约为100 kJ / m〜3且弯曲能量密度大约为10 kJ / m〜3的驱动材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号