【24h】

Super Hybrid Materials

机译:超级混合材料

获取原文
获取原文并翻译 | 示例

摘要

Various composite materials have been developed, but in many cases problems arise due to the combined materials such as fabrication becoming difficult because of the significant increase in viscosity, and transparency of the polymer is sacrificed. These issues can be overcome by controlling the nano-interface; however, this is considered as a difficult task since nanoparticles (NPs) easily aggregate in polymer matrices because of their high surface energy. Organic functionalization of inorganic NPs is required to increase affinity between NPs and polymers. For fabricating multi-functional materials, we proposed a new method to synthesize organic modified NPs by using supercritical water. Because organic molecules and metal salt aqueous solutions are miscible in supercritical water and water molecules serve as acid/base catalysts for the reactions, hybrid organic/inorganic NPs can be synthesized under the supercritical condition. The hybrid NPs show high affinity for the organic solvent and the polymer matrix, which leads to the fabrication of these super hybrid NPs. How to release the heat from the devices is the bottle neck of developing the future power devices, and thus nano hybrid materials of polymer and ceramics are required to achieve both high thermal conductivity and easy thin film flexible fabrication, namely trade-off functions. Surface modification of the BN particles via supercritical hydrothermal synthesis improves the affinity between BN and the polymers. This increases the BN loading ratio in the polymers, thus resulting in high thermal conductivity. Transparent dispersion of high refractive index NPs, such as TiO_2 and ZrO_2, in the polymers is required to fabricate optical materials. By adjusting the affinity between NPs and the polymers, we could fabricate super hybrid nanomaterials, which have flexiblility and high refractive index and transparency.
机译:已经开发了各种复合材料,但是在许多情况下,由于组合的材料而引起问题,例如由于粘度的显着增加而使得制造变得困难,并且牺牲了聚合物的透明度。这些问题可以通过控制纳米界面来克服。然而,这被认为是一项艰巨的任务,因为纳米颗粒(NP)由于其高表面能而容易聚集在聚合物基质中。需要无机NP的有机官能化以增加NP与聚合物之间的亲和力。为了制备多功能材料,我们提出了一种使用超临界水合成有机改性NP的新方法。由于有机分子和金属盐水溶液可与超临界水混溶,并且水分子充当反应的酸/碱催化剂,因此可以在超临界条件下合成有机/无机杂化NP。杂化NP显示出对有机溶剂和聚合物基质的高亲和力,这导致了这些超级杂化NP的制造。如何从器件中释放热量是发展未来功率器件的瓶颈,因此需要聚合物和陶瓷的纳米混合材料来实现高导热率和易于薄膜柔性制造,即权衡功能。通过超临界水热合成对BN颗粒进行表面改性可提高BN与聚合物之间的亲和力。这增加了聚合物中BN的负载率,从而导致高导热率。为了制造光学材料,需要在聚合物中透明分散高折射率NP(例如TiO_2和ZrO_2)。通过调节NP与聚合物之间的亲和力,我们可以制造出具有柔性,高折射率和透明性的超级杂化纳米材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号