首页> 外文会议>Advances in optics for biotechnology, medicine and surgery XV >COMPRESSED FULL-FIELD FOURIER-TRANSFORM SPECTROMETRY
【24h】

COMPRESSED FULL-FIELD FOURIER-TRANSFORM SPECTROMETRY

机译:压缩全场傅立叶变换光谱

获取原文
获取原文并翻译 | 示例

摘要

Imaging Fourier transform spectrometry (IFTS) can be used for hyperspectral imaging in the wide-field mode. Wide-field hyperspectral imaging is a powerful technique for quantifying functional and morphological states of cells and tissues. Multiplexed fluoresce imaging, Multicolor spectral karyotyping of human chromosomes, spectral fluorescence resonance energy transfer(sp-FRET) and spontaneous Raman imaging are few examples. Unlike other hyperspectral imaging modalities, IFTS measures the Fourier transform of the spectrum of light at each pixel in the wide-field image, and traditionally, the inverse Fourier transform is used to extract the spectral information. The spectral recovery process (for each pixel) can be captured by a set of liner equations written in the matrix form below. l=(1+DFT) S + n Here Interferogram, I, is the measurement vector, DFT is the discrete Fourier transform matrix, S is the spectral vector of the pixel and n is the measurement noise vector. Representing (1+DFT) as a measurement matrix A,the above can be rewritten as an optimization problem of estimating S from the observations /. /=AS+ n According to the compressive sensing theory, since A is maximally incoherent [1], when the spectral vectors is sparse or compressible, / can be incompletely or compressively sampled [1].Therefore, for wide-field hyperspectral imaging, IFTS uniquely offers compressive data acquisition capabilities in the spectral dimension. However due to the limitations of the existing imaging interferometers this idea cannot be implemented in wide-field mode. Michelson interferometer is non-common-path and less stable and the stable common-path Sagnac interferometer is limited in the field of view due its phase tilt. Overcoming these limitations, in this work, we introduce a new common-path and full-field imaging interferometer that can take advantage of compressive sampling. The instrument's phase stability is experimentally validated and hyperspectral imaging is demonstrated by measuring a laser line, broadband LED light sources, Fluorescent beads, fluorescently labeled cells and tissues, and Raman imaging of 4-acetamidophenol (active ingredients of Tylenol). Compressive sampling capability of the instrument is demonstrated in two applications namely, multiplexed fluoresce imaging and compressed Raman imaging. In the fluorescence domain, we first simulate a compressive data acquisition scheme for a set of quantum dots. We evaluate the expected system performance to measure the peak-emission wavelengths of spectra in order to identify the multiplexed species. Then we demonstrate the same in an experiment to measure the peak- emission wavelengths of a fluorescent beads sample and of a mouse muscle tissue specimen with multiple species. Up to 20 times compression is demonstrated in the beads sample and up to 5 times compression is demonstrated in the tissue specimen. In the Raman domain, we experimentally demonstrate up to 10 times compression for a 4-acetamidophenol specimen. In summary, we introduce a new imaging interferometer for compressed wide-field Fourier transform spectrometry and the instrument is about an order of magnitude faster than the state of the art IFTS systems for fluorescence and Raman applications.
机译:成像傅里叶变换光谱(IFTS)可以用于宽视场模式下的高光谱成像。宽视场高光谱成像是一种用于量化细胞和组织的功能和形态状态的强大技术。多重荧光成像,人类染色体的多色光谱核型分析,光谱荧光共振能量转移(sp-FRET)和自发拉曼成像是很少的例子。与其他高光谱成像方式不同,IFTS可以测量宽视场图像中每个像素处光谱的傅立叶变换,传统上,傅立叶逆变换用于提取光谱信息。光谱恢复过程(针对每个像素)可以通过以下面矩阵形式编写的一组线性方程式来捕获。 l =(1 + DFT)S + n其中,干涉图I是测量向量,DFT是离散傅立叶变换矩阵,S是像素的光谱向量,n是测量噪声向量。将(1 + DFT)表示为测量矩阵A,可以将以上内容重写为根据观测值估算S的优化问题。 / = AS + n根据压缩感测理论,由于A最大不相干[1],因此当光谱矢量稀疏或可压缩时,/可能会被不完整或压缩采样[1]。因此,对于宽视场高光谱成像,IFTS独特地在频谱范围内提供压缩数据采集功能。但是,由于现有成像干涉仪的局限性,该想法无法在宽视场模式下实现。迈克尔逊干涉仪是非公共路径且不稳定,并且稳定的公共路径Sagnac干涉仪由于其相位倾斜而在视场中受到限制。克服这些限制,在这项工作中,我们介绍了一种可以利用压缩采样优势的新型共径和全场成像干涉仪。该仪器的相稳定性已通过实验验证,并通过测量激光线,宽带LED光源,荧光珠,荧光标记的细胞和组织以及4-乙酰氨基苯酚(泰诺的有效成分)的拉曼成像,证明了高光谱成像。仪器的压缩采样能力在两种应用中得到了证明,即多重荧光成像和压缩拉曼成像。在荧光域中,我们首先模拟一组量子点的压缩数据采集方案。我们评估了预期的系统性能,以测量光谱的峰值发射波长,以识别多路复用的物种。然后,我们在实验中证明了这一点,该实验用于测量荧光珠样品和具有多种物种的小鼠肌肉组织样品的峰值发射波长。在珠子样品中显示出高达20倍的压缩,在组织样本中显示出高达5倍的压缩。在拉曼域中,我们实验证明了4-乙酰氨基苯酚样品的压缩高达10倍。总之,我们推出了一种用于压缩宽视场傅立叶变换光谱仪的新型成像干涉仪,该仪器比用于荧光和拉曼应用的先进IFTS系统快约一个数量级。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号