首页> 外文会议>Advances in optics for biotechnology, medicine and surgery XV >IMPROVING LIGHT DELIVERY FOR OPTOGENETICS USING WAVEFRONT SHAPING
【24h】

IMPROVING LIGHT DELIVERY FOR OPTOGENETICS USING WAVEFRONT SHAPING

机译:利用波形整形改善光传输的光遗传学

获取原文
获取原文并翻译 | 示例

摘要

New developments in neuroscience are enabling us to understand the brain at unprecedented temporal and spatial resolution. One of these exciting new techniques is optogenetics, which allows select neuronal populations of the brain to be targeted to express light sensitive ion channels. These enable optical control of the electrophysiological state of the cell, enabling neurons to be activated or deactivated using light. However, due to the strongly scattering nature of biological tissue in the brain, tightly focusing light to a specific voxel is not possible with conventional optical techniques. In this poster we will present the results of our recent work to develop new optical wavefront shaping tools which enable us to focus light inside strongly scattering media and discuss the outlook for such tools for improving light delivery for techniques such as optogenetics. The focus of our work is to use an optical wavefront shaping technology termed Time-Reversed Ultrasound- Encoded (TRUE) focusing [1,2]. This strategy uses ultrasound to form an ultrasonic focus at depths beyond the optical diffusion limit. This ultrasound focus modulates photons passing through it via the acousto-optic effect, shifting their frequency by the ultrasound frequency. Then, by detecting these ultrasound-tagged photons, we can measure the optical wavefront corresponding to the tagged photons and selectively time-reverse this optical field using a technique called Digital Optical Phase Conjugation (DOPC) [3]. This wavefront is then used to send photons back into the scattering tissue in such a way that they travel in a time-reversed fashion, constructively interfering at the location of the ultrasound focus. This allows us to focus light in highly scattering media beyond the optical diffusion limit at ultrasonic resolution (~30 micrometers at 50 MHz). In this poster we will present results from recent work using the TRUE focusing technique to perform optogenetic stimulation. We demonstrate in 300 and 500 micrometer thick living brain slices that the TRUE focusing technique can be used to improve the spatial resolution of optogenetic stimulation compared to conventional optical methods. Furthermore, we will discuss the outlook and challenges facing the development of wavefront shaping techniques such as TRUE focusing for applications in neuroscience and other areas of biotechnology.
机译:神经科学的新发展使我们能够以前所未有的时间和空间分辨率理解大脑。这些令人兴奋的新技术之一是光遗传学,它可以使选定的大脑神经元种群成为表达光敏感离子通道的靶点。这些能够对细胞的电生理状态进行光学控制,从而使神经元能够通过光激活或失活。但是,由于大脑中生物组织的强烈散射特性,使用常规光学技术无法将光紧密聚焦到特定体素上。在此海报中,我们将介绍我们开发新的光波阵面成形工具的最新工作成果,这些工具使我们能够将光聚焦在强散射介质内,并讨论此类工具的前景,以改善诸如光遗传学等技术的光传输。我们的工作重点是使用一种称为波前时间聚焦(TRUE)聚焦的光波阵面成形技术[1,2]。该策略使用超声在超出光扩散限制的深度处形成超声焦点。该超声焦点通过声光效应调制通过它的光子,使它们的频率偏移超声频率。然后,通过检测这些带有超声标记的光子,我们可以测量与标记的光子相对应的光波前,并使用称为数字光学相位共轭(DOPC)的技术有选择地对这个光场进行时间反转[3]。然后,使用该波阵面以使光子以与时间相反的方式行进的方式将光子发送回散射组织,从而在超声焦点的位置产生相长干涉。这使我们能够将光聚焦在高度散射的介质中,超出超声扩散分辨率(在50 MHz时约为30微米)的光扩散极限。在此海报中,我们将介绍使用TRUE聚焦技术进行光遗传学刺激的最新工作成果。我们证明了在300和500微米厚的活脑切片中,与传统的光学方法相比,TRUE聚焦技术可用于提高光遗传学刺激的空间分辨率。此外,我们将讨论诸如在神经科学和其他生物技术领域中应用的TRUE聚焦等波前成形技术的发展所面临的前景和挑战。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号