首页> 外文会议>Advances in regenerative medicine: Role of nanotechnology. and engineering principles >Chapter 14 Results of Biocompatibility Testing of Novel, Multifunctional Polymeric Implant Materials In-Vitro and In-Vivo
【24h】

Chapter 14 Results of Biocompatibility Testing of Novel, Multifunctional Polymeric Implant Materials In-Vitro and In-Vivo

机译:第14章新型和体外多功能聚合物植入物材料的生物相容性测试结果

获取原文
获取原文并翻译 | 示例

摘要

Extensive in-vitro and in-vivo evaluation of the biocompatibility of biomaterials intended for clinical applications is necessary to provide information on the interactions that take place between the organism and these materials under specific implant conditions. Sterilization of polymer-based implant materials is a basic requirement but can lead to their damage or destruction. Low-temperature plasma (LTP) or ethylene oxide (EO) sterilization are objects of intensive research and were applied on the materials used in this program. After 4 weeks of polymer incubation in minimal essential medium (MEM), samples, sterilized by LTP, gave a markedly higher mean cell lysis rate (3.7 ± 2.5%) than EO sterilized samples (0.9 ± 0.3%). To achieve relevant in-vitro results on biomaterial-cell interactions, biocompatibility testing was carried out with cultures of locotypical cells, e.g. cells of the upper aerodigestive tract (ADT). Primary cell cultures of the oral cavity, the pharynx and the esophagus showed region-typical varying relationships between epithelial, fibroblastic and smooth muscle cells. Proper wound healing is thought to be required for the integration of biomaterials and angiogenesis is a prerequisite for this process. A focus of the present work was the influence of polymer-based implant materials and their degradation products on angiogenesis in-vivo. After 48 h, none of the polymer samples demonstrated development of an avascular region in the chorioallantoic membrane (CAM) test. A key process in proper wound healing is the tightly controlled degradation and regeneration of the extracellular matrix (ECM). A biomaterial for the reconstruction of the upper ADT is subjected to varying pH values and enzymatic, bacterial and mechanical stress during the digestive and the swallowing process. These complex conditions can currently only be investigated in-vivo in an animal model. As a model the stomach of the rat was selected, in which a biomaterial can be investigated under extreme chemical, enzymatic, bacteriological and mechanical conditions. Other parameters investigated are the impermeability of the polymer-tissue closure and the tissue regeneration after defect reconstruction. The fluid tight integration of a long term resorbable AB-copolymer network in the surrounding tissue of the gastric wall of Sprague Dawley rats could be demonstrated.
机译:为了提供有关在特定植入条件下生物体与这些材料之间发生相互作用的信息,有必要对旨在用于临床的生物材料的生物相容性进行广泛的体外和体内评估。聚合物基植入材料的灭菌是基本要求,但可能导致其损坏或破坏。低温等离子体(LTP)或环氧乙烷(EO)灭菌是深入研究的对象,并已应用于该程序中使用的材料。在基本必需培养基(MEM)中孵育4周后,经LTP灭菌的样品的平均细胞裂解率(3.7±2.5%)比EO灭菌的样品(0.9±0.3%)高得多。为了获得有关生物材料-细胞相互作用的相关体外结果,利用细胞型细胞的培养物,例如细胞培养物进行了生物相容性测试。上消化道(ADT)的细胞。口腔,咽部和食道的原代细胞培养显示上皮,成纤维细胞和平滑肌细胞之间的区域典型变化关系。认为适当的伤口愈合是生物材料整合所必需的,血管生成是该过程的前提。当前工作的重点是基于聚合物的植入物材料及其降解产物对体内血管生成的影响。 48小时后,没有任何聚合物样品在绒毛膜尿囊膜(CAM)测试中显示出无血管区域的形成。适当伤口愈合的关键过程是细胞外基质(ECM)的严格控制降解和再生。在消化和吞咽过程中,用于重建上层ADT的生物材料会经受不同的pH值以及酶,细菌和机械应力。这些复杂的条件目前只能在动物模型中进行体内研究。作为模型,选择了大鼠的胃,其中可以在极端的化学,酶,细菌学和机械条件下研究生物材料。研究的其他参数是聚合物组织闭合的不渗透性和缺陷重建后的组织再生。可以证明长期可吸收的AB共聚物网络在Sprague Dawley大鼠胃壁周围组织中的流体紧密结合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号