首页> 外文会议>AIAA Modeling and Simulation Technologies Conference 2017 >VALIDATION OF A SYSTEM THEORY MODEL FOR AIRCRAFT ENGINE SIMULATION
【24h】

VALIDATION OF A SYSTEM THEORY MODEL FOR AIRCRAFT ENGINE SIMULATION

机译:飞机发动机仿真系统理论模型的验证

获取原文
获取原文并翻译 | 示例

摘要

To investigate transient engine performance effects, the Institute of Jet Propulsion and Turbomachinery (IFAS) of the Technische Universitat Braunschweig is developing the simulation tool ASTOR (Aircraft Engine Simulation for Transient Operation Research). The objective is to create an analytical simulation environment for gas turbine processes where the operational behavior of an existing gas turbine could be modeled accurately. This basic model is to be retained while arbitrary modifications to the engine are examined. These modifications could include additional bleed systems, power off take or the deterioration of engine components. Since the basic engine model is retained, this model would also be accurate in predicting the operational performance of the engine if the same modifications are applied in an experiment. The general application of the gas path analysis is difficult since every additional parameter which has to be calculated requires additional boundary conditions which affect the entire engine model. To avoid this, a system theory approach is used to establish a model which could be used similar to the model of an electric or hydraulic circuit. Circuit models consist of interconnected building blocks where each block models the behavior of an individual component. With this method it is possible to describe even the most complex circuits with sufficient accuracy and the basic circuit model could be retained and validated while additional components are added or single components modified. Thus the dedicated effects of the modification could be observed in the model. To apply a similar approach to a gas turbine, the gas turbine has to be split into convenient building blocks. Although the basic requirement for a performance calculation of determining the gas state variables in the planes between the components has to be met. To achieve this, the engine is split in to annulus segments. These annulus segments describe the gas dynamic in the engine and provides interfaces where the turbo components can supply or subtract energy. The isentropic work of a turbo component is considered as additional force acting on the inlet plane of these segment. Loss energy due to the limited efficiency is an additional heat flow to the segment. Since in every time step of the simulation the mass flow, spool speed and pressure ratio of a turbo component are known no additional power equilibrium conditions are required to read the component maps. To acquire a mathematical description of this system all energy flows across the different energy domains have to be accounted and the chain of causation within the building block has to be established. This is done according to the bondgraph method [1], [2]. The result is a generalized building block that is described by a closed system of equations. Therefore the building blocks could be considered individually to examine the operational behaviour of a single component. This has been done to validate the model using a compressor as an example [3]. To simulate a gas turbine the building blocks are connected in series. The ASTOR system model has to be validated therefore a simple turbo jet engine has be modelled with GasTurb® to provide the required input annulus geometry and component maps of the engine. The ASTOR model of this engine then is parametrized with the calculated data. It composes of five annulus blocks representing the inlet nozzle, the radial compressor, the combustion chamber, the turbine and the nozzle. The compressor and the turbine are coupled by a shaft. The model is initialized at zero spool speed, thus zero mas flow and with ambient air conditions in every control volume. This is convenient since the model is in equilibrium. To start the gas turbine the shaft is drive by an additional torque until a spool speed is reached where fuel could be injected. From this point in time the engine is only controlled by the give fuel flow parameter.
机译:为了研究瞬态发动机性能的影响,不伦瑞克工业大学的喷气推进和涡轮机械研究所(IFAS)正在开发仿真工具ASTOR(用于瞬态运行研究的飞机发动机仿真)。目的是为燃气轮机过程创建一个分析模拟环境,在该环境中可以精确地模拟现有燃气轮机的运行行为。在检查对发动机的任意修改时,应保留该基本模型。这些修改可能包括其他放气系统,断电或发动机组件损坏。由于保留了基本的发动机模型,因此如果在实验中应用相同的修改,则该模型在预测发动机的运行性能方面也将是准确的。气体路径分析的一般应用是困难的,因为必须计算的每个附加参数都需要影响整个发动机模型的附加边界条件。为了避免这种情况,使用系统理论方法来建立模型,该模型可以类似于电气或液压回路的模型使用。电路模型由互连的构建模块组成,其中每个模块都对单个组件的行为进行建模。使用这种方法,甚至可以以足够的精度描述最复杂的电路,并且可以在添加其他组件或修改单个组件的同时保留和验证基本电路模型。因此,可以在模型中观察到修改的专用效果。为了将类似的方法应用于燃气轮机,必须将燃气轮机分成方便的构件。尽管必须满足确定部件之间的平面中的气体状态变量的性能计算的基本要求。为此,将引擎分成多个环段。这些环段描述了发动机中的气体动力,并提供了涡轮组件可以提供或减少能量的接口。涡轮组件的等熵功被认为是作用在这些扇形进气口平面上的附加力。由于效率有限而造成的能量损失是流向段的额外热量。由于在模拟的每个时间步骤中,涡轮组件的质量流量,滑阀速度和压力比都是已知的,因此不需要额外的功率平衡条件即可读取组件图。为了获得对该系统的数学描述,必须考虑跨不同能量域的所有能量流,并且必须建立构造块内的因果链。这根据绑定图方法[1],[2]完成。结果是一个通用的构建块,由封闭的方程组描述。因此,可以单独考虑构件,以检查单个组件的操作行为。这样做是使用压缩器作为示例来验证模型[3]。为了模拟燃气轮机,构件串联连接。必须对ASTOR系统模型进行验证,因此必须使用GasTurb®对简单的涡轮喷气发动机进行建模,以提供所需的输入环空几何形状和发动机部件图。然后,使用计算出的数据对该引擎的ASTOR模型进行参数化。它由五个环形块组成,分别代表入口喷嘴,径向压缩机,燃烧室,涡轮机和喷嘴。压缩机和涡轮通过轴连接。该模型在零阀芯速度下初始化,因此零质量流量和每个控制体积中的环境空气条件被初始化。由于模型处于平衡状态,因此很方便。为了启动燃气轮机,通过额外的扭矩来驱动轴,直到达到可以喷射燃料的阀芯速度。从该时间点开始,仅通过给定燃料流量参数控制发动机。

著录项

  • 来源
  • 会议地点 Denver(US)
  • 作者

    K. Dwinger; J. Friedrichs;

  • 作者单位

    Technische Universitaet Braunschweig Institut fuer Flugantriebe und Stroemungsmaschinen Hermann-Blenk-Straße 37, D-38108 Braunschweig;

    Technische Universitaet Braunschweig Institut fuer Flugantriebe und Stroemungsmaschinen Hermann-Blenk-Straße 37, D-38108 Braunschweig;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号