【24h】

SYNCHRONIZATION OF MOTOR PROTEINS COUPLED THROUGH A SHARED LOAD

机译:通过共享负载实现电机蛋白质的同步

获取原文
获取原文并翻译 | 示例

摘要

Kinesin-1 is a processive molecular motor that converts the energy from adenosine triphosphate (ATP) hydrolysis and thermal fluctuations into motion along microtubules. This motion can be interpreted as a result of ATP-fueled nonlinear nonsmooth oscillations of coupled motor domains which interact with a mi-crotubule to transport a cargo. This class of nano-scale motors transport cargoes for distances of several micrometers in cells. This transport can also be achieved in vitro, opening the possibility of developing robust and extremely versatile nano-scale actuators or sensors based on the machinery used by biological systems. These devices could be used in a range of nano-scale applications such as drug delivery and lab-on-a-chip. However, to design such systems, a quantitative, in-depth understanding of molecular motors is essential. Single-molecule techniques have allowed the experimental characterization of kinesin-1 in vitro at a range of loads and ATP concentrations. Existing models of kinesin movement are stochastic in nature and are not well suited to describing transient dynamics. However, kinesin-1 is expected to undergo transient dynamics when external perturbations (e.g. interaction with other kinesin molecules) cause the load to vary in time. It is thought that in the cell, several kinesin motors work cooperatively to transport a common load. Thus, a transient description is integral to capturing kinesin behavior. This paper presents a mechanistic model that describes, deterministically, the average motion of kinesin-1. The structure of the kinesin-1 molecule is approximated with a simplified geometry, explicitly describing the coupling between its two heads. The diffusion is modeled using a novel approach based on the mean first-passage time, where the potential in which the free head diffuses is time varying and updated at each instant during the motion. The mechanistic model is able to predict existing force-velocity data over a wide range of ATP concentrations (including the interval 1 μM to 10 mM). More importantly, the model provides a transient description, allowing predictions of kinesin-1 pulling time-varying loads and coordinated transport involving several kinesin-1 molecules. The deterministic approach is validated by comparing results to experiments and Monte Carlo simulations of the stochastic dynamics. Furthermore, using this model, the synchronization of several kinesin-1 molecules transporting a common load is investigated. Novel methods to characterize synchronization, tailored to the particularities of these nonsmooth systems, are presented.
机译:Kinesin-1是一种过程分子电动机,可将三磷酸腺苷(ATP)水解和热波动产生的能量转换为沿微管的运动。可以将这种运动解释为耦合运动域的ATP激发的非线性非平稳振荡的结果,该运动域与微管相互作用以运输货物。此类纳米级电动机在单元中将货物运输几微米的距离。这种运输也可以在体外实现,这为基于生物系统使用的机械开发健壮且用途广泛的纳米级执行器或传感器提供了可能性。这些设备可用于一系列纳米级应用,例如药物输送和芯片实验室。但是,要设计这样的系统,必须对分子马达进行定量,深入的了解。单分子技术已允许在一定范围的负载和ATP浓度下对kinesin-1进行体外实验表征。现有的驱动蛋白运动模型本质上是随机的,因此不适合描述瞬态动力学。但是,当外部扰动(例如与其他驱动蛋白分子的相互作用)导致负载随时间变化时,驱动蛋白1有望经历瞬态动力学。据认为,在该单元中,多个驱动蛋白马达协同工作以传输共同的负载。因此,瞬态描述对于捕获驱动蛋白行为是必不可少的。本文提出了一种机械模型,可确定性地描述驱动蛋白1的平均运动。 kinesin-1分子的结构以简化的几何近似,明确描述了其两个头部之间的偶联。使用基于平均首次通过时间的新颖方法对扩散进行建模,其中自由头扩散的电势随时间变化并在运动过程中的每个瞬间更新。该机理模型能够预测各种ATP浓度(包括1μM到10 mM的区间)上现有的力速数据。更重要的是,该模型提供了一个瞬态描述,可以预测kinesin-1随时间变化的负载以及涉及多个kinesin-1分子的协调运输。通过将结果与实验和随机动力学的蒙特卡洛模拟进行比较,可以验证确定性方法的有效性。此外,使用此模型,研究了几个共同驱动负载的kinesin-1分子的同步性。提出了表征同步的新颖方法,这些方法适合于这些非平滑系统的特殊性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号