【24h】

THERMODYNAMICS OF CAPILLARY ADHESION IN MEMS

机译:MEMS中毛细粘附的热力学

获取原文
获取原文并翻译 | 示例

摘要

In this extended abstract, we briefly describe a thermodynamic model to treat capillary adhesion energies in MEMS. We first determine the constitutive laws of a capillary pendular ring bridging an asperity to a substrate. We find that the work of adhesion, W, depends on the surface separation rate. For the constant volume case (rapid surface separation), W=2γ (where y is the surface energy per unit area of the liquid-air interface), but if thermodynamic equilibrium is maintained (slow surface separation), W=γ. Thermodynamic analysis indicates that heat from the system walls can lower the work of adhesion at slow separation rates. We extend these constitutive laws to a simple multi-asperity surface in which the asperities are all of constant height. At low vapor partial pressures (p/p_(sat)), adhesion can be several orders of magnitude below γ because of incomplete wetting. As vapor partial pressure increases, condensing liquid fills in the geometric irregularities of the surface. As this filling takes place, W approaches 2γ for both the slow and rapid separation rates.
机译:在这个扩展的摘要中,我们简要描述了一种热力学模型,用于处理MEMS中的毛细管粘附能。我们首先确定将凹凸不平连接到基底的毛细管摆环的本构律。我们发现粘附力W取决于表面分离率。对于恒定体积的情况(快速表面分离),W =2γ(其中y是液-气界面每单位面积的表面能),但是如果保持热力学平衡(慢表面分离),则W =γ。热力学分析表明,来自系统壁的热量会以较慢的分离速度降低粘附力。我们将这些本构定律扩展到一个简单的多粗糙表面,其中粗糙表面都具有恒定的高度。在较低的蒸气分压(p / p_(sat))下,由于润湿不完全,附着力可能比γ低几个数量级。随着蒸汽分压的增加,冷凝液会填充表面的几何不规则性。随着这种填充的发生,对于慢速和快速分离率,W都接近2γ。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号