首页> 外文会议>Annual AAS (American Astronautical Society) Rocky Mountain Guidance and Control Conference Feb 5-9, 2003 Breckenridge, Colorado, U.S.A. >DEEP IMPACT FLYBY SPACECRAFT INSTRUMENT POINTING IN THE PRESENCE OF AN INACTIVE IMP ACTOR SPACECRAFT
【24h】

DEEP IMPACT FLYBY SPACECRAFT INSTRUMENT POINTING IN THE PRESENCE OF AN INACTIVE IMP ACTOR SPACECRAFT

机译:在非作用力影响力存在的情况下进行深空飞行的Flyby空间工艺仪器定点

获取原文
获取原文并翻译 | 示例

摘要

The engineering goal of the Deep Impact mission is to impact comet Tempel 1 on July 4, 2005, with a 350 kg active Impactor spacecraft (s/c). The relative velocity will be just over 10 km/s. The impact is expected to excavate a crater of approximately 20 m deep and 100 m wide. The science objective is that of exposing the interior material and understanding the properties of the nucleus. In order to achieve the engineering goal and science objective, Deep Impact will use the autonomous optical navigation (AutoNav) software system to guide the Impactor s/c to Tempel 1 intercept near the center of brightness (CB), while a second s/c, the Flyby s/c, uses identical software to determine its comet-relative trajectory providing the attitude determination and control system (ADCS) with the relative position information necessary to point the High Resolution Instrument (HRI) and Medium Resolution Instrument (MRI) at the expected impact site during encounter. If the Impactor s/c is determined to be functioning improperly prior to release, the issue of predicting the impact location to correctly point the instruments at key science epochs (TOI: Time of Impact; and TOFI: Time of Final Imaging), becomes important and therefore must be studied. This relies, fundamentally, on the ability to determine the trajectory of the Impactor s/c relative to the Flyby s/c by treating the Impactor s/c as an optical beacon, relative to which the Flyby s/c's trajectory is estimated using images of the Impactor s/c. Simulation results show that for an inactive Impactor s/c, the pointing error is improved from 519 μrad (1 μrad = 10~(-6) radians) to 72.3 μrad (3σ) at TOI, and from 3.96 mrad (1 mrad = 10~(-3) radians) to 441 μrad (3σ) at TOFI. Then compared to the baseline CB targeting/tracking approach, results show the pointing error contribution due to knowledge of the impact location changes from 60 μrad to 72.3 μrad (3σ) at TOI, and from 495 μrad to 441 μrad (3σ) at TOFI. This paper deals only with the pointing error contribution due to errors in predicting the impact location and describes the acquisition of optical data of the Impactor s/c and associated errors using the Flyby instruments; the expected uncertainty in predicting the impact location and the resulting pointing errors; and the algorithm for autonomously computing a pointing correction during encounter.
机译:深度撞击任务的工程目标是,在2005年7月4日用350千克活动撞击器航天器(s / c)撞击坦普尔1号彗星。相对速度将刚好超过10 km / s。预计该冲击将开挖约20 m深和100 m宽的火山口。科学目的是暴露内部物质并了解核的性质。为了实现工程目标和科学目标,Deep Impact将使用自主光学导航(AutoNav)软件系统将Impactor s / c引导至亮度中心(CB)附近的Tempel 1截距,而第二s / c Flyby s / c使用相同的软件来确定其彗星相对轨迹,从而为姿态确定和控制系统(ADCS)提供将高分辨率仪器(HRI)和中分辨率仪器(MRI)指向所需的相对位置信息遭遇期间的预期影响地点。如果确定Impactor s / c在释放之前无法正常运行,那么预测冲击位置以正确将仪器对准关键科学纪元(TOI:碰撞时间; TOFI:最终成像时间)的问题就变得很重要。因此必须进行研究。从根本上讲,这取决于通过将Impactor s / c视为光学信标来确定相对于Flyby s / c的Impactor s / c轨迹的能力,相对于Flyby s / c的轨迹使用图像进行估算Impactor s / c。仿真结果表明,对于不活动的Impactor s / c,TOI处的指向误差从519μrad(1μrad= 10〜(-6)弧度)提高到72.3μrad(3σ),从3.96 mrad(1 mrad = 10 〜(-3)弧度)至TOFI处的441μrad(3σ)。然后,与基线CB定位/跟踪方法相比,结果表明,由于知道了碰撞位置在TOI处从60μrad变到72.3μrad(3σ),在TOFI从495μrad变到441μrad(3σ),导致了指向误差的贡献。本文仅处理由于预测碰撞位置时的误差而导致的指向误差,并描述了使用Flyby仪器获取Impactor s / c的光学数据以及相关误差。预测撞击位置的预期不确定性和由此产生的指向误差;以及在遭遇期间自主计算指向校正的算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号