【24h】

PRECISION ATTITUDE DETERMINATION FOR GOES N SATELLITE

机译:卫星N的精确姿态确定

获取原文
获取原文并翻译 | 示例

摘要

Since 1998, Boeing Satellite Systems (BSS) has developed an advanced Stellar In-ertial Attitude Determination (SIAD) system for the next-generation Geostationary Operational Environmental Satellites (GOES) we're building for NASA. The goals of the next-generation GOES system are to maintain continuous environmental and storm warning systems with an enhanced ground resolution (1.5 km ground resolution at nadir) and to monitor the Earth's surface and space environmental conditions. To achieve high-resolution Image Navigation and Registration (INR) operations, the next-generation GOES satellites require better than 10 micro radians (3 s) attitude knowledge performance. This requirement is far beyond the capability of any previously existing attitude determination method. The BSS developed SIAD system uses star measurements provided by Ball Aerospace's CT-602 star trackers (3-for 2 redundancies), spacecraft rates measured by Northrop's Hemispheric Inertia Reference Unit (HIRU), and a 6-states Kalman filter implemented in the Spacecraft Control Processor (SCP) to determine spacecraft 3-axis attitude. It has the advantage of two orders of magnitude improvement in accuracy over existing earth/sun sensor-based attitude determination systems. To meet this never-before achieved 10 micro radian bus pointing for GOES N through Q, we have created many innovative solutions including: a method to account for the star tracker's non-Gaussian, non-white spatial dependent errors in the Kalman filter design to optimize SIAD performance, a 45-degree star tracker bore-sight orientation to attenuate star tracker high spatial frequency error, a time-matching technique to minimize attitude error between star tracker based attitude and gyro based attitude introduced during spacecraft slews, use of an equalized star catalog to minimize on-board catalog size while enhancing SIAD performance, and a Kalman filter implementation with weighted measurement noise covariance matrices. A laboratory test bed has been developed and used to fully validate our SIAD design. The test bed consists of a Ball star tracker flight-like engineering model mounted on an optical bench, a flight HIRU mounted on a 3-axis Contraves Motion Table (CMT), an ADI Real Time System (RTS) hosting the flight software on an emulated Spacecraft Controls Processor (ESCP) and other dynamics modelling software on real-time computers. A high resolution CRT scene simulator mounted on the same optical bench is used to project stars seen by the star tracker as the spacecraft moves in space. A collimator placed between the star tracker and the scene simulator produces far-field stars to be observed by the star tracker. By commanding the gimbal motions, the 3-axis CMT produces the desired spacecraft motions, which introduce rates sensed by the HIRU mounted on the CMT. In this paper we will describe our SIAD design for the GOES N program and present our ground hardware-in-the-loop tests that fully validate our design.
机译:自1998年以来,波音卫星系统(BSS)为我们为美国国家航空航天局(NASA)建造的下一代对地静止作战环境卫星(GOES)开发了先进的恒星惯性姿态确定(SIAD)系统。下一代GOES系统的目标是维持具有增强的地面分辨率(最低点为1.5 km的地面分辨率)的连续环境和风暴预警系统,并监视地球的表面和空间环境状况。为了实现高分辨率的图像导航和配准(INR)操作,下一代GOES卫星需要优于10微弧度(3 s)的姿态知识性能。该要求远远超出了任何现有的姿态确定方法的能力。 BSS开发的SIAD系统使用Ball Aerospace的CT-602星型跟踪器(3表示2冗余)提供的恒星测量,诺斯罗普的半球惯性参考单元(HIRU)测量的航天器速率以及在航天器控制中实现的6状态卡尔曼滤波器处理器(SCP)确定航天器3轴姿态。与现有的基于地球/太阳传感器的姿态确定系统相比,它的精度提高了两个数量级。为了满足从未达到的10微弧度总线指向GOES N到Q的要求,我们创建了许多创新的解决方案,其中包括:一种在Kalman滤波器设计中解决恒星跟踪器的非高斯,非白色空间相关误差的方法,以解决以下问题:优化SIAD性能,45度星跟踪器的视线方位以减弱星跟踪器的高空间频率误差,时间匹配技术以最小化在航天器回转期间引入的基于星跟踪器的姿态和基于陀螺仪的姿态之间的姿态误差,使用均衡星型目录可最大程度地减少机载目录的大小,同时增强SIAD性能,并采用带有加权测量噪声协方差矩阵的卡尔曼滤波器实现。已经开发了实验室测试台,用于完全验证我们的SIAD设计。测试台包括安装在光学平台上的球形跟踪器飞行式工程模型,安装在3轴Contraves运动台(CMT)上的HIRU飞行,在飞行器上托管飞行软件的ADI实时系统(RTS)。在实时计算机上模拟航天器控制处理器(ESCP)和其他动力学建模软件。当航天器在太空中移动时,使用安装在同一光学平台上的高分辨率CRT场景模拟器投射由恒星跟踪仪看到的恒星。放置在恒星追踪器和场景模拟器之间的准直仪会产生远场恒星,以供恒星追踪器观察。通过命令万向节运动,三轴CMT产生所需的航天器运动,从而引入由安装在CMT上的HIRU感应的速率。在本文中,我们将描述用于GOES N程序的SIAD设计,并介绍可完全验证我们设计的地面硬件在环测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号