首页> 外文会议>ASME(American Society of Mechanical Engineers) Pressure Vessels and Piping Conference vol.3: Design and Analysis; 20050717-21; Denver,CO(US) >TECHNIQUES FOR MODELING THERMAL AND MECHANICAL STRESSES GENERATED IN CATALYTIC CRACKER AND COKE DRUM HOT BOXES
【24h】

TECHNIQUES FOR MODELING THERMAL AND MECHANICAL STRESSES GENERATED IN CATALYTIC CRACKER AND COKE DRUM HOT BOXES

机译:催化裂化器和焦炭鼓热箱中产生的热应力和机械应力的建模技术

获取原文
获取原文并翻译 | 示例

摘要

Consideration of heat transfer loading between surfaces during transient and steady state conditions is required when analyzing vessels that involve secondary stresses and low cycle fatigue. Some of the higher stresses occur in enclosed, non-insulated air space regions, referred to as a hot box, between a supporting skirt (or shell) and a vessel. Hot boxes are critical parts of vessel designs in catalytic crackers and delayed coke drums. In coke drum cycles, the sudden heating of the vessel generates significant bending stresses in the skirt, and radiation heat transfer causes a greater area of skirt to be heated when compared to conduction alone. This heat must be removed during the cooling transient or the hot expanded skirt will be pulled by the contracting vessel, resulting in large bending stresses. It is the experiences of the authors that failures to calculate the transient temperatures in the components often underestimate fatigue stresses. Some of the important elements associated with modeling thermal stresses in hot boxes include using appropriate boundary conditions, radiation and convection conditions, pressure end loads, and conductivities for the insulation materials. This paper emphasizes the importance of performing detailed sensitivity analyses when unknown thermal or mechanical loading conditions exist. Examples include the effects of convection properties within the hotbox and conditions associated with transient loads. Discussions are also provided on the potential geometric issues associated with the use of axisymmetric finite element models. Additionally, this paper discusses the importance of making field measurements to enhance modeling assumptions. Discussions will be provided on the best methods for acquiring field data and the techniques employed.
机译:分析涉及次级应力和低周疲劳的容器时,需要考虑瞬态和稳态条件下表面之间的传热负载。一些较高的应力发生在支撑裙板(或壳体)和容器之间的封闭,非绝缘的空气空间区域(称为热箱)中。热箱是催化裂化炉和延迟焦化塔中容器设计的关键部分。在焦炭鼓循环中,容器的突然加热在裙部中产生明显的弯曲应力,并且与单独的传导相比,辐射热传递导致裙部的面积更大。在冷却瞬态过程中必须除去这些热量,否则热缩的裙边将被收缩容器拉动,从而导致较大的弯曲应力。作者的经验是,未能计算出组件中的瞬态温度通常会低估疲劳应力。与热箱中的热应力建模相关的一些重要元素包括使用适当的边界条件,辐射和对流条件,压力端载荷以及绝缘材料的电导率。本文强调了在未知的热或机械载荷条件下进行详细灵敏度分析的重要性。示例包括热箱内对流特性的影响以及与瞬态载荷相关的条件。还讨论了与使用轴对称有限元模型相关的潜在几何问题。此外,本文讨论了进行现场测量以增强建模假设的重要性。将讨论获取现场数据的最佳方法和所采用的技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号