首页> 外文会议>ASME(American Society of Mechanical Engineers) Turbo Expo vol.6 pt.A; 20050606-09; Reno-Tahoe,NV(US) >SHORT LENGTH-SCALE ROTATING STALL INCEPTION IN A TRANSONIC AXIAL COMPRESSOR - CRITERIA AND MECHANISMS
【24h】

SHORT LENGTH-SCALE ROTATING STALL INCEPTION IN A TRANSONIC AXIAL COMPRESSOR - CRITERIA AND MECHANISMS

机译:跨轴压气机的短尺度旋转失速弯折-判据和机理

获取原文
获取原文并翻译 | 示例

摘要

The current paper reports on investigations aimed at advancing the understanding of the flow mechanism that leads to the onset of short-length scale rotating stall in a transonic axial compressor. Experimental data show large oscillation of the tip clearance vortex as the rotor operates near the stall condition. Inception of spike-type rotating stall is also measured in the current transonic compressor with high response pressure transducers. Computational studies of a single passage and the full annulus were carried out to identify flow mechanisms behind the spike-type stall inception in the current transonic compressor rotor. Steady and unsteady single passage flow simulations were performed, first to get insight into the interaction between the tip clearance vortex and the passage shock. The conventional Reynolds-averaged Navier-Stokes method with a standard turbulence closure scheme does not accurately reproduce tip clearance vortex oscillation and the measured unsteady pressure field. Consequently, a Large Eddy Simulation (LES) was carried out to capture more relevant physics in the computational simulation of the rotating stall inception. The unsteady random behavior of the tip clearance vortex and it's interaction with the passage shock seem to be critical ingredients in the development of spike-type rotating stall in a transonic compressor. The Large Eddy Simulation was further extended to the full annulus to identify flow mechanisms behind the measured spike-type rotating stall inception. The current study shows that the spike-type rotating stall develops after the passage shock is fully detached from the blade passages. Interaction between the tip clearance vortex and the passage shock creates a low momentum area near the pressure side of the blade. As the mass flow rate decreases, this low momentum area moves further upstream and reversed tip clearance flow is initiated at the trailing edge plane. Eventually, the low momentum area near the pressure side reaches the leading edge and forward spillage of the tip clearance flow occurs. The flows in the affected blade passage or passages then stall. As the stalled blade passages are formed behind the passage shock, the stalled area rotates counter to the blade rotation just like the classical Emmon's type rotating stall. Both the measurements and the computations show that the rotating stall cell covers one to two blade passage lengths and rotates at roughly 50% of the rotor speed.
机译:本论文报道了旨在促进对导致跨音速轴向压缩机中短尺度旋转失速的流动机理的理解的研究。实验数据表明,当转子在失速条件下运行时,尖端间隙涡流会产生较大的振荡。在具有高响应压力传感器的当前跨音速压缩机中,也测量了尖峰型旋转失速的开始。对单通道和整个环面进行了计算研究,以确定当前跨音速压缩机转子中尖峰型失速开始后的流动机理。进行了稳态和非稳态单通道流动模拟,首先是要了解尖端间隙涡流与通道冲击之间的相互作用。具有标准湍流闭合方案的常规雷诺平均Navier-Stokes方法无法准确地再现尖端间隙涡旋振荡和测得的非稳态压力场。因此,在旋转失速开始的计算仿真中,进行了大涡模拟(LES)来捕获更多相关的物理学。尖端间隙涡流的不稳定的随机行为及其与通道冲击的相互作用似乎是跨音速压缩机尖峰型旋转失速过程发展的关键因素。大涡模拟进一步扩展到整个环面,以识别所测得的尖峰型旋转失速开始后的流动机理。当前的研究表明,在通道冲击从叶片通道完全脱离后,会产生尖峰型旋转失速。尖端间隙涡流和通道冲击之间的相互作用在叶片压力侧附近产生了较低的动量区域。随着质量流率的降低,该低动量区域进一步向上游移动,反向后缘间隙流在后缘平面处开始。最终,靠近压力侧的低动量区域到达前缘,并发生尖端间隙流的向前溢出。然后,受影响的一个或多个叶片通道中的流停止。由于失速的叶片通道是在通道冲击之后形成的,因此失速的区域与叶片的旋转方向相反,就像经典的Emmon型旋转失速器一样旋转。测量结果和计算结果均表明,旋转失速单元覆盖了一到两个叶片通道长度,并以转子速度的大约50%旋转。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号