首页> 外文会议>ASME Internal Combustion Engine Division fall technical conference 2010 >DEVELOPMENT AND APPLICATION OF ADVANCED COMBUSTION MODELING TOOLS FOR HEAVY DUTY GASEOUS FUELED INDUSTRIAL SPARK IGNITION ENGINES
【24h】

DEVELOPMENT AND APPLICATION OF ADVANCED COMBUSTION MODELING TOOLS FOR HEAVY DUTY GASEOUS FUELED INDUSTRIAL SPARK IGNITION ENGINES

机译:重型气态工业火花点火发动机高级燃烧建模工具的开发与应用

获取原文
获取原文并翻译 | 示例

摘要

This paper covers the development and application of advanced combustion modeling tools to meet the stringent design objectives of heavy duty gaseous fueled industrial spark ignition engines. Extensive literature survey and validation work was conducted to identify the best available chemical mechanism to represent natural gas and its variations. Mechanism reduction using the Simulation Error Minimization (SEM) approach was undertaken to reduce the chemistry mechanism to a reasonable size for practical computational turn around times. Laminar flame speed (LFS) correlations were also developed using the identified chemistry mechanism. These fundamental elements were then integrated into a level set method (G-equation) based combustion model to predict heat release rate, exhaust gas composition, and the onset and intensity of autoignition (knock). The developed combustion modeling tools can handle lean or stoichiometric operation, presence of high levels of EGR, and variations in natural gas fuel composition. Detailed experimental data was available in the form of a spark timing sweep covering a non-knocking to a highly knocking operating condition for different fuel compositions. The intake flow modeling process was validated with available flow rig data at different valve lifts. Accurate modeling of the intake and compression process generates precise initial conditions for combustion modeling. Results are shown for conventional natural gas, natural gas containing 9% propane by mass, and natural gas containing 12% hydrogenmass fraction, at stoichiometric operating conditions. Excellent agreement with the measured data was observed in predicting heat release rate and the onset and intensity of knock for these different fuel compositions. The modeling tools developed in this study offer a robust methodology to design and optimize combustion systems for heavy duty gaseous fueled industrial spark ignition engines.
机译:本文涵盖了先进的燃烧建模工具的开发和应用,以满足重型气体燃料工业火花点火发动机的严格设计目标。进行了广泛的文献调查和验证工作,以确定代表天然气及其变化的最佳可用化学机理。进行了使用“模拟误差最小化”(SEM)方法进行的机理简化,以将化学机理降低到合理的大小,以适应实际的计算周转时间。层流火焰速度(LFS)的相关性也使用已确定的化学机制得到发展。然后将这些基本元素集成到基于水平集方法(G方程)的燃烧模型中,以预测放热率,废气成分以及自燃的开始和强度(爆震)。开发的燃烧建模工具可以处理稀薄或化学计量的运行,高水平EGR的存在以及天然气燃料成分的变化。可以以火花正时扫描的形式获得详细的实验数据,涵盖不同燃料成分从非爆震到高爆震的工况。进气流量建模过程已通过不同气门升程下可用的流量装备数据进行了验证。进气和压缩过程的精确建模可为燃烧建模生成精确的初始条件。显示了在化学计量操作条件下常规天然气,按质量计含有9%丙烷的天然气和按氢含量占12%的天然气的结果。在预测这些不同燃料组合物的放热速率以及爆震的开始和强度方面,观察到的数据与实测数据非常吻合。这项研究中开发的建模工具提供了一种强大的方法,可以设计和优化重型气态燃料工业火花点火发动机的燃烧系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号