首页> 外文会议>xEV battery technology, application amp; market 2018 >Deep Eutectic Solvents, a Versatile Alternative to Ionic Liquids in Ionogel-Like Electrolytes
【24h】

Deep Eutectic Solvents, a Versatile Alternative to Ionic Liquids in Ionogel-Like Electrolytes

机译:深共晶溶剂,是类似离子凝胶的电解质中离子液体的多功能替代品

获取原文
获取原文并翻译 | 示例

摘要

The automotive industry is investing heavily in the vehicle electrification. At the center of this revolution is the energy carrier, no longer combustible fuels but a battery capable of a high action radius. The Li-ion battery technology is at the forefront due to its high volumetric and gravimetric energy density. However, increasing the action radius, safety and reliability of electric vehicles requires further development of these chemistries. For instance, replacing the typical graphite anode with a lithium metal anode, increases the capacity of the battery significantly. Unfortunately, solid electrolytes; e.g. LISICON, garnets, perovskites; are needed to counteract the hazards of rechargeable lithium metal batteries. The aforementioned solid state electrolytes suffer from low ionic conductivity (<10-4 mS/cm), interfacial resistances, and difficulty of implementing these in conventional battery manufacturing, thereby impeding their economic viability. [1] Hybrid solid-state electrolytes address these issues and allow for an easier implementation into conventional battery technology. The hybrid solid-state electrolyte combines the desirable properties of both liquid and solid electrolytes by confining the liquid electrolyte within a (meso-)porous solid framework.[2,3] Prime examples are impregnated gel polymer electrolytes and ionogels/solid composite electrolytes/ionobrids. The latter consist of ionic liquid electrolytes (e.g. BMIMTFSI + LiTFSI) confined within a porous (hybrid) silica framework. [4] Unfortunately these ionic liquids are very costly, which impedes their implementation in commercial batteries. In this work, the costly ionic liquid is replaced by a deep eutectic solvent. The latter has proven to be a versatile and cheap alternative to the expensive ionic liquids for lithium ion batteries and capacitors. In this work, we demonstrate the potential of these deep eutectic solvents in hybrid solid-state electrolytes next to their use as liquid electrolytes. A series of hybrid electrolytes is synthesized in a facile one-pot sol-gel route at room temperature and investigated for their electrochemical properties. Linear sweep voltammetry (LSV) and cyclic voltammetry (CV) reveal a beneficial anodic stability limit of up to 4.8 V vs. Li+/Li while electrochemical impedance spectroscopy (EIS) reveals a high ionic conductivity of up to 1.15 mS/cm depending on composition. Demonstrator cells with LiFeP04 (LFP) display reversible capacities and remain stable for over 100 cycles. By using these deep eutectic solvents, the costs of these hybrid solid-state electrolytes could be lowered significantly.
机译:汽车工业在汽车电气化方面进行了大量投资。革命的核心是能量载体,不再是可燃燃料,而是具有高作用半径的电池。锂离子电池技术因其高体积和重量能量密度而处于最前沿。然而,增加电动车辆的作用半径,安全性和可靠性要求这些化学物质的进一步发展。例如,用锂金属阳极代替典型的石墨阳极可显着增加电池的容量。不幸的是,固体电解质;例如LISICON,石榴石,钙钛矿;以抵消可充电锂金属电池的危害。前述固态电解质具有低离子电导率(<10-4mS / cm),界面电阻以及在常规电池制造中难以实现这些缺点,从而阻碍了其经济可行性。 [1]混合固态电解质解决了这些问题,并使传统电池技术更容易实现。混合固态电解质通过将液态电解质限制在(介孔)固体骨架中,从而结合了液态和固态电解质的理想特性。[2,3]主要实例是浸渍的凝胶聚合物电解质和离子凝胶/固态复合电解质/离子ob。后者由封闭在多孔(混合)二氧化硅骨架内的离子液体电解质(例如BMIMTFSI + LiTFSI)组成。 [4]不幸的是,这些离子液体非常昂贵,这阻碍了它们在商业电池中的应用。在这项工作中,昂贵的离子液体被深的低共熔溶剂代替。事实证明,后者是锂离子电池和电容器的昂贵离子液体的通用且廉价的替代品。在这项工作中,我们证明了这些深共晶溶剂在混合固态电解质中的潜力,以及它们作为液体电解质的用途。在室温下以简便的一锅溶胶-凝胶路线合成了一系列杂化电解质,并研究了它们的电化学性能。线性扫描伏安法(LSV)和循环伏安法(CV)揭示了一个相对于Li + / Li高达4.8 V的有益阳极稳定性极限,而电化学阻抗谱(EIS)则显示了高达1.15 mS / cm的高离子电导率,具体取决于成分。具有LiFePO4(LFP)的演示器电池显示可逆容量,并在超过100个周期内保持稳定。通过使用这些深的低共熔溶剂,可以显着降低这些混合固态电解质的成本。

著录项

  • 来源
  • 会议地点 Mainz(DE)
  • 作者单位

    Universiteit Hasselt, Institute for Materials Research (IMO-IMOMEC), Inorganic and Physical Chemistry, Agoralaan, Diepenbeek, B-3590 Belgium;

    Universiteit Hasselt, Institute for Materials Research (IMO-IMOMEC), Inorganic and Physical Chemistry, Agoralaan, Diepenbeek, B-3590 Belgium;

    Universiteit Hasselt, Institute for Materials Research (IMO-IMOMEC), Inorganic and Physical Chemistry, Agoralaan, Diepenbeek, B-3590 Belgium;

    Universiteit Hasselt, Institute for Materials Research (IMO-IMOMEC), Inorganic and Physical Chemistry, Agoralaan, Diepenbeek, B-3590 Belgium;

    Universiteit Hasselt, Institute for Materials Research (IMO-IMOMEC), Inorganic and Physical Chemistry, Agoralaan, Diepenbeek, B-3590 Belgium;

    Universiteit Hasselt, Institute for Materials Research (IMO-IMOMEC), Inorganic and Physical Chemistry, Agoralaan, Diepenbeek, B-3590 Belgium;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号