首页> 外文会议>Ceramic materials for energy applications II >A MODEL FOR SIMULATION OF COUPLED MICROSTRUCTURAL AND C MPOSITIONAL EVOLUTION
【24h】

A MODEL FOR SIMULATION OF COUPLED MICROSTRUCTURAL AND C MPOSITIONAL EVOLUTION

机译:微观结构与碳运动演化耦合的模拟模型

获取原文
获取原文并翻译 | 示例

摘要

The formation, transport and segregation of components in nuclear fuels fundamentally control their behavior, performance, longevity and safety. Most nuclear fuels enter service with a uniform composition consisting of a single phase with two or three components. Fission products form introducing more components. The segregation and transport of the components is complicated by the underlying microstructure consisting of grains, pores, bubbles and more, which is evolving during service. As they evolve, components and microstructural features interact such that composition affects microstructure and vice versa. The ability to predict compositional and microstructural evolution in 3D as a function of burn-up would greatly improve the ability to design safe, high burn-up nuclear fuels. We present a model that combines elements of Potts Monte Carlo, MC, and the phase-field model to treat coupled microstructural-compositional evolution. The evolution process demonstrated is grain growth and diffusion in a two-phase system. The hybrid model uses an equation of state, EOS, based on the microstructural state and composition. The microstructural portion uses the traditional MC EOS and the compositional portion uses the phase-field EOS: E_(kyb)=∑_(i=l)~n[E_v(q_i ,C)=_2~1∑_(j=l)~nJ(q_i,q_j)]+∫k(▽C)~2dV E_v is the bulk free energy of each site I and J is the neighbor interaction energy between neighboring sites I and j The last term is the compositional interfacial energy as defined in the traditional phase-field model. The coupled microstructure-composition fields evolve by minimizing the free energy in a path dependent manner. An application of this modeling framework demonstrates the expected microstructural and phase coarsening, which is controlled by long-range diffusion.
机译:核燃料中成分的形成,运输和隔离从根本上控制了它们的行为,性能,寿命和安全性。大多数核燃料进入服役后的组成都是统一的,由单一相和两种或三种成分组成。裂变产品形式引入了更多的组件。组件的分离和运输会由于下面的微观结构而变得复杂,该微观结构由晶粒,孔隙,气泡等构成,并且在使用过程中会不断演变。随着它们的发展,组件和微结构特征会相互作用,从而组成会影响微结构,反之亦然。预测3D的组成和微观结构随燃耗而变化的能力将大大提高设计安全,燃耗高的核燃料的能力。我们提出了一个模型,该模型结合了Potts Monte Carlo,MC和相场模型的元素来处理耦合的微结构-组成演化。所展示的演化过程是两相系统中的晶粒生长和扩散。混合模型基于微观结构状态和组成使用状态方程EOS。微结构部分使用传统的MC EOS,组成部分使用相场EOS:E_(kyb)= ∑_(i = l)〜n [E_v(q_i,C)= _ 2〜1∑_(j = l )〜nJ(q_i,q_j)] +∫k(▽C)〜2dV E_v是每个位点I的本体自由能,J是相邻位点I和j之间的邻居相互作用能。最后一项是组成界面能在传统的相场模型中定义。通过以依赖于路径的方式最小化自由能来发展耦合的微结构-组成场。该建模框架的应用演示了预期的微观结构和相变粗化,这是由远程扩散控制的。

著录项

  • 来源
  • 会议地点 Daytona Beach FL(US);Daytona Beach FL(US);Daytona Beach FL(US);Daytona Beach FL(US);Daytona Beach FL(US);Daytona Beach FL(US)
  • 作者单位

    Sandia National Laboratories PO Box 5800, MS 0747 Albuquerque, NM 87185-5800;

    Sandia National Laboratories PO Box 5800, MS 0747 Albuquerque, NM 87185-5800;

    Sandia National Laboratories PO Box 5800, MS 0747 Albuquerque, NM 87185-5800;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号