首页> 外文会议>Complex light and optical forces IV >NanoTracker: Force-Sensing Optical Tweezers for Quantitative Single-Molecule Nanomanipulation
【24h】

NanoTracker: Force-Sensing Optical Tweezers for Quantitative Single-Molecule Nanomanipulation

机译:NanoTracker:用于定量单分子纳米操作的力传感光镊

获取原文
获取原文并翻译 | 示例

摘要

In the past decade, experiments involving the manipulation and observation of nanostructures with light using optical tweezers methodology have developed from proof-of-principle experiments to an established quantitative technique in fields ranging from (bio)physics to cell biology. With optical tweezers, microscopically small objects can be held and manipulated. At the same time, the forces exerted on the trapped objects can be accurately measured.rnWith the Prism-Award winning NanoTracker a platform for performing experiments using specimen from single molecules to whole cells is available. With two time-continuous traps, it allows the controlled trapping and accurate tracking of nanoparticles, suspended either in a microfluidic multichannel flow chamber or even in a temperature-controlled open Petri dish. With its 3D detection system, particle displacements in the trap can be recorded with nanometer precision. Moreover, dynamic forces acting on the particle can be measured with better than picoNewton resolution on a microsecond time-scale.rnHere, we discuss design features of and measurements done with the NanoTracker platform. In particular, we show how one of the hallmarks of single-molecule biophysics, the overstretching transition of DNA, can be studied in a versatile manner and used for protein-DNA interaction mechanics. Moreover, on the lower side of the force range the other benchmark single-molecule biophysics, kinesin's 8-nm steps and stall forces, are shown to be measurable.rnWith the NanoTracker, optical tweezers finally transcend from the labs of self-building scientists who helped the technique mature, to a turn-key system able to serve a much wider community of researchers in the life sciences.
机译:在过去的十年中,涉及使用光学镊子方法操纵和观察光的纳米结构的实验已从原理验证实验发展为从(生物)物理到细胞生物学的领域中已建立的定量技术。使用光学镊子,可以固定和操纵微观的小物体。同时,可以精确测量施加在被困物体上的力。有了Prism-Award获奖的NanoTracker,就可以使用从单个分子到整个细胞的标本进行实验的平台。利用两个时间连续的捕集阱,它可以对悬浮在微流控多通道流室或什至是温度控制的开放培养皿中的纳米颗粒进行受控的捕获和精确跟踪。借助其3D检测系统,可以以纳米精度记录陷阱中的颗粒位移。此外,可以在微秒级的时间尺度上测量比picoNewton分辨率更好的作用在粒子上的动态力。在此,我们讨论NanoTracker平台的设计功能和完成的测量。特别是,我们展示了如何以一种通用的方式研究单分子生物物理学的标志之一,即DNA的过度拉伸转变,并将其用于蛋白质-DNA相互作用机制。此外,在力范围的较低端,其他基准单分子生物物理学,即驱动蛋白的8 nm阶跃力和失速力,可测量。通过NanoTracker,光镊最终超越了自我构建科学家的实验室,帮助这项技术成熟了,成为了一个能够为生命科学领域更广泛的研究人员服务的交钥匙系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号