【24h】

Nanophotonics: materials and devices

机译:纳米光子学:材料和设备

获取原文
获取原文并翻译 | 示例

摘要

Optical technology plays an increasingly important role in numerous applications areas, including communications, information processing, and data storage. However, as optical technology develops, it is evident that there is a growing need to develop reliable photonic integration technologies. This will include the development of passive as well as active optical components that can be integrated into functional optical circuits and systems, including filters, switching fabrics that can be controlled either electrically or optically, optical sources, detectors, amplifiers, etc. We explore the unique capabilities and advantages of nanotechnology in developing next generation integrated photonic chips. Our long-range goal is to develop a range of photonic nanostructures including artificially birefringent and resonant devices, photonic crystals, and photonic crystals with defects to tailor spectral filters, and nanostructures for spatial field localization to enhance optical nonlinearities, to facilitate on-chip system integration through compatible materials and fabrication processes. The design of artificial nanostructured materials, PCs and integrated photonic systems is one of the most challenging tasks as it not only involves the accurate solution of electromagnetic optics equations, but also the need to incorporate the material and quantum physics equations. Near-field interactions in artificial nanostructured materials provide a variety of functionalities useful for optical systems integration. Furthermore, near-field optical devices facilitate miniaturization, and simultaneously enhance multifunctionality, greatly increasing the functional complexity per unit volume of the photonic system. Finally and most importantly, nanophotonics may enable easier integration with other nanotechnologies: electronics, magnetics, mechanics, chemistry, and biology.
机译:光学技术在众多应用领域中发挥着越来越重要的作用,包括通信,信息处理和数据存储。但是,随着光学技术的发展,很明显,对开发可靠的光子集成技术的需求不断增长。这将包括可集成到功能性光电路和系统中的无源和有源光学组件的开发,包括滤波器,可通过电或光控制的交换结构,光源,检测器,放大器等。纳米技术在开发下一代集成光子芯片方面的独特能力和优势。我们的长期目标是开发一系列光子纳米结构,包括人工双折射和谐振器件,光子晶体和具有缺陷的光子晶体,以定制光谱滤光片;以及用于空间场定位的纳米结构,以增强光学非线性,从而促进片上系统通过兼容的材料和制造工艺进行集成。人造纳米结构材料,个人计算机和集成光子系统的设计是最具挑战性的任务之一,因为它不仅涉及电磁光学方程的精确解,而且还需要结合材料和量子物理学方程。人造纳米结构材料中的近场相互作用为光学系统集成提供了多种有用的功能。此外,近场光学器件促进了小型化,同时增强了多功能性,大大增加了光子系统每单位体积的功能复杂性。最后也是最重要的是,纳米光子学可以使与其他纳米技术的更轻松集成:电子,磁学,力学,化学和生物学。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号