【24h】

OPTICAL WIRELESS COMMUNICATIONS TO OC-768 AND BEYOND

机译:OC-768及以后的光学无线通讯

获取原文
获取原文并翻译 | 示例

摘要

Laser and LED-based wireless communication systems are currently providing license-free interconnection for broadband voice, data and video transport. These systems allow for the immediate, reliable and low-cost extension of copper and fiber-based networks to any end user, providing efficient First Mile bypass access to high data rate backbone networks at speeds ranging from T-l voice to full throughput ATM at 155 Mbps and up to Gigabit Ethernet. These wireless optical beams constitute a "Virtual Fiber" in the air, providing the capabilities of fiber in situations where wired connectivity is unavailable, impractical, expensive or slow-to-implement, while achieving a combination of low cost, speed and reliability that cannot be matched by microwave, mm wave, spread spectrum or other competing (actually complementary) wireless technologies. The carrier frequency of the optical beam is about 10,000 times higher than the highest frequencies used by the millimeter wave technology. By means of Wavelength Division Multiplexing more than 1000 independent data channels can be projected into the air on a single beam thus providing a potential bandwidth ten million times that of any RF solution. The twin barriers of physics and regulatory bureaucracy to this essentially infinite wireless bandwidth are thus eliminated by this Virtual Fiber. As user density and individual bandwidth needs escalate, the optical wireless will be the preferred medium of choice in both network and cellular interconnection. A mesh topology which integrates our optical wireless systems with the latest Optical Access switches and routing equipment will be described using case study examples from Japan to South America. As the Bandwidth Blowout continues to push the limits of electronics and especially in the case of DWDM (Dense Wavelength Division Multiplex), the conventional optical wireless solutions are no longer feasible. Instead of using f.o. transceivers to convert photons to electrons and thence back to photons we have designed a series of airlinks whose transmitters and receivers operate without electronics. At the PATX (Photonic Airlink Transmitter), instead of demodulating the fiber optic input signals from a Network Interface Unit (NIU) we project the light from the polished terminated fiber end into the air using appropriate optics. Any signal being carried by the fiber from the NIU is now "airborne" without any intermediate processing electronics thus realizing the full potential of the optical carrier. At the receiver end (PARX - Photonic Airlink Receiver), the weak optical signals are collected by the appropriate optics (including combiners using large area MMF) and guided to the NIU (switch, PABX, etc.) by compatible fiber. It is necessary to maintain a large field-of view at the receiver to ensure reliability, stability and ease of alignment. This is achieved by use of high N. A. fiber. In this paper we discuss the design trade offs, construction and field test results of several systems implementing the all-photonic wireless concept including: 1. Transmission of WDM signals through the air at distances up to 1 km. 2. Results with wireless transmission of Gigabit Ethernet using the Optiswitch modules as the NIU. 3. Providing high speed wireless (Fast Ethernet and beyond) to the home at a cost of less than $250 per node. The paper will conclude with a discussion on the role of the all-photonic wireless technology in the emerging field of Passive Optical Networking.
机译:当前,基于激光和LED的无线通信系统正在为宽带语音,数据和视频传输提供免许可证的互连。这些系统允许将铜缆和光纤网络立即,可靠且低成本地扩展到任何最终用户,从而以从Tl语音到155 Mbps的全吞吐量ATM的速度提供对高数据速率骨干网的高效First Mile旁路访问。以及高达千兆以太网。这些无线光束构成空中的“虚拟光纤”,在无法使用有线连接,不切实际,昂贵或实施缓慢的情况下提供光纤的功能,同时实现了低成本,速度和可靠性无法结合的优势与微波,毫米波,扩频或其他竞争性(实际上是互补的)无线技术相匹配。光束的载波频率比毫米波技术使用的最高频率高约10,000倍。通过波分复用,可以在一条波束上将超过1000个独立的数据通道投射到空中,从而提供了潜在带宽一千万倍于任何RF解决方案的带宽。因此,这种虚拟光纤消除了物理和管理官僚主义对这种实质上无限的无线带宽的双重障碍。随着用户密度和单个带宽需求的增加,光无线将成为网络和蜂窝互连中首选的首选介质。将使用从日本到南美的案例研究示例来描述将我们的光学无线系统与最新的光学访问交换机和路由设备集成在一起的网状拓扑。随着带宽井喷继续推动电子设备的极限,特别是在DWDM(密集波分复用)​​的情况下,常规的光学无线解决方案不再可行。而不是使用f.o.收发器将光子转换为电子,然后再转换回光子,我们设计了一系列空中链路,其发射器和接收器无需电子即可运行。在PATX(光子无线链路发射器)上,我们没有使用网络接口单元(NIU)来解调光纤输入信号,而是使用合适的光学器件将来自抛光端接光纤端的光投射到空中。现在,来自NIU的光纤传输的任何信号都将被“空中传播”,而无需任何中间处理电子设备,从而实现了光载波的全部潜力。在接收器端(PARX-光子空中链路接收器),弱光信号由适当的光学器件(包括使用大面积MMF的合成器)收集,并由兼容的光纤引导至NIU(交换机,PABX等)。有必要在接收器处保持较大的视野,以确保可靠性,稳定性和易于对准。这是通过使用高N.A.纤维来实现的。在本文中,我们讨论了几种实现全光子无线概念的系统的设计折衷,构造和现场测试结果,包括:1. WDM信号通过空中传输的距离最远为1 km。 2.使用Optiswitch模块作为NIU进行千兆以太网的无线传输的结果。 3.以每个节点不到250美元的成本为家庭提供高速无线(快速以太网及以后)。本文将以全光子无线技术在无源光网络的新兴领域中的作用作为结尾进行讨论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号