首页> 外文会议>Corrosion monitoring and measurement >Crevice Corrosion of Grade-12 Titanium
【24h】

Crevice Corrosion of Grade-12 Titanium

机译:12级钛的缝隙腐蚀

获取原文
获取原文并翻译 | 示例

摘要

The crevice corrosion of ASTM grade-12 titanium (Ti-12; 0.8 wt % Ni, 0.3 wt % Mo) has been studied in neutral 0.27 mol/L NaCI at temperatures up to 120℃ using a galvanic coupling technique. The results were compared to those of similar experiments conducted on ASTM grade-2 titanium (Ti-2) specimens containing various amounts of iron impurity. The mi-crostructural properties of the Ti-12 were determined by standard metallo-graphic techniques and transmission electron microscopy. Penetration depth profiles were determined using metallographic and image analysis techniques. The redistribution of alloying elements (Ni, Mo) and impurities (Fe), and the location of absorbed hydrogen, were determined by secondary ion mass spectrometry (SIMS) imaging. The rate and extent of crevice propagation were significantly suppressed on Ti-12 compared to Ti-2, especially at higher temperature (120℃). Up to 97 % of the total amount of crevice propagation was driven by proton reduction inside the creviced area rather than by oxygen reduction outside the crevice. SIMS imaging shows that Ni accumulates on the corroding surface, probably in the form of residual Ti_2Ni particles. Proton reduction is catalyzed on these particles, leading to their hy-driding and an increase in the relative area of internal cathodes compared to available anodic surface area. This self-induced "cathodic modification" effect leads to repassivation of the corroded site before extensive damage can be sustained.
机译:使用电流偶合技术,在最高120℃的中性0.27 mol / L NaCl中研究了ASTM 12级钛(Ti-12; 0.8 wt%Ni,0.3 wt%Mo)的缝隙腐蚀。将结果与包含各种铁杂质的ASTM 2级钛(Ti-2)标本进行的类似实验进行了比较。 Ti-12的微观组织性能是通过标准金相技术和透射电子显微镜确定的。使用金相和图像分析技术确定穿透深度轮廓。通过二次离子质谱(SIMS)成像确定合金元素(Ni,Mo)和杂质(Fe)的重新分布以及吸收的氢的位置。与Ti-2相比,Ti-12上缝隙扩展的速度和程度得到了显着抑制,尤其是在较高温度(120℃)下。缝隙传播总量的多达97%是由缝隙区域内的质子还原驱动的,而不是由缝隙外的氧气还原驱动的。 SIMS成像表明,Ni可能以残留的Ti_2Ni颗粒形式聚集在腐蚀表面上。与这些可用的阳极表面积相比,在这些粒子上催化了质子还原,从而导致了它们的脱水和内部阴极相对面积的增加。这种自我诱导的“阴极修饰”效应导致腐蚀部位重新钝化,然后才能承受广泛的破坏。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号