首页> 外文会议>Electroactive Polymer Actuators and Devices(EAPAD) >What can we learn from nastic plant structures? The phytomimetic potentiality of nastic structures
【24h】

What can we learn from nastic plant structures? The phytomimetic potentiality of nastic structures

机译:我们可以从鼻植物结构中学到什么?鼻结构的拟植物潜力

获取原文
获取原文并翻译 | 示例

摘要

While some researchers see developments on the nanotechnology scale as the major or exclusive biomimetic trend in the 21st century, others insist that the exploration of the biomimetic potentialities of macroscopic systems has hardly been started. On either scale exploration of biological systems and development of engineering materials proceed in parallel and this provides the opportunity to actively search for similar, convergent solutions and designs in both directions. Recent studies of plant motors ranging from rapid calcium-dependent shape changes in plant proteins (forisomes) to the rapid closure of Venus flytraps and the ultra-rapid opening of dogwood flowers attracted the attention of both biologists and engineers. Here we summarize the principal differences of the nanomotors and macromotors that drive plant and animal movements. Then we describe three types of hydration motors that are common in plants: osmotic, colloid, and fibrous. In engineering electroactive polymers (EAPs) have emerged as new actuation materials with large, electrically induced strain and bending capacity. It remains to be seen whether hydrated EAPs with low voltage-actuation have bioconvergent relevance and proximity to biological situations; in particular plant movements. So far we only know that (ⅰ) pH-sensitive poly-ionic polymers like pectins are a common occurrence in the primary walls and occasionally some vacuoles of plant cells, (ⅱ), that strong electric field changes also occur in living tissues, and (ⅲ) that some aspects of their action are not understood and remain a matter of further investigation.
机译:虽然一些研究人员将纳米技术规模的发展视为21世纪的主要或专有仿生趋势,但其他研究人员则坚持认为,几乎没有开始对宏观系统的仿生潜力进行探索。无论在哪种规模上,对生物系统的探索和工程材料的开发都是并行进行的,这为积极寻求双向相似的融合解决方案和设计提供了机会。最近对植物运动的研究,从植物蛋白中钙依赖性形状的快速变化(异构体)到金星捕蝇器的快速闭合以及山茱flowers花的超快速打开,引起了生物学家和工程师的注意。在这里,我们总结了驱动动植物运动的纳米马达和大型马达的主要区别。然后,我们描述了植物中常见的三种类型的水合作用:渗透,胶体和纤维状。在工程中,电活性聚合物(EAPs)已经成为具有大的电致应变和弯曲能力的新型驱动材料。低压致动的水合EAPs是否具有生物收敛性并接近生物学情况还有待观察。特别是植物运动。到目前为止,我们只知道(ⅰ)pH敏感的聚离子聚合物(如果胶)在原壁上很常见,并且偶尔会出现一些植物细胞的液泡,(ⅱ)在活体组织中也会发生强电场变化,并且(ⅲ)他们行动的某些方面尚不明确,有待进一步调查。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号