首页> 外文会议>Forty second International Pyrotechnics Society seminar >Hybrid Nanothermites (NSTEX®): Energetic Nanomaterials for Detonation Initiation in Secondary Explosives
【24h】

Hybrid Nanothermites (NSTEX®): Energetic Nanomaterials for Detonation Initiation in Secondary Explosives

机译:混合纳米热敏材料(NSTEX®):用于爆炸性炸药中爆炸的高能纳米材料

获取原文
获取原文并翻译 | 示例

摘要

Conventional nanothermites are prepared by mixing metallic oxides (MO_X) with aluminum nanoparticles. The performances of such mixtures can be improved to some extent, by varying the nature of the metal in the oxide, by adjusting the particle size distribution, by optimizing the A1/MO_X ratio or by improving the homogeneity of mixtures and the interfacial contact between nanoparticles. The reactivity of nanothermites optimized this way remains, however, too weak for high power applications like detonation initiation in secondary explosives. The nanothermite explosive power can be further enhanced by increasing both the adiabatic temperature of the reaction and the amount of gaseous species in reaction products. The use of oxidizing metal salts as sulfates instead of oxides, leads to compositions with substantially higher reaction heats. The gas production can be strengthened by adding high explosives (e.g. RDX) in the form of powders with submicron- to nanosized particle size distribution. Ultrafine explosive particles (30 - 500 nm) were prepared by the spray flash-evaporation (SFE) process which has been developed by our laboratory at pre-industrial scale with a production rate reaching now one kilogram per day. Hybrid nanothermites have features of both nanothermites and high explosives. The tests in open tubes have shown that the reaction of these energetic materials gave a shock front propagating with kilometric celerity (1 - 3.4 km/s), which was able to detonate a high explosive charge (PETN). Hybrid nanothermites combine the qualities of both nanothermites and high explosives and are the most promising candidate materials for replacing lead-based primary explosives.
机译:通过将金属氧化物(MO_X)与铝纳米颗粒混合来制备常规的纳米级。通过改变氧化物中金属的性质,调节粒径分布,优化A1 / MO_X比例或改善混合物的均匀性和纳米颗粒之间的界面接触,可以在某种程度上改善此类混合物的性能。 。通过这种方式优化的纳米导热剂的反应性仍然很弱,但是对于高功率应用(如二次炸药中的起爆引发)来说太弱了。通过增加反应的绝热温度和反应产物中气态物质的量,可以进一步提高纳米热炸药的爆炸力。使用氧化金属盐作为硫酸盐而不是氧化物,导致组合物具有明显更高的反应热。可以通过添加具有亚微米级至纳米级粒度分布的粉末形式的高炸药(例如RDX)来增强气体的产生。超细炸药颗粒(30-500 nm)是通过喷雾闪蒸(SFE)工艺制备的,该工艺是我们实验室在工业化之前开发的,现在的生产率达到每天一公斤。杂化纳米温度具有纳米温度和高爆炸物的特征。在敞口管中进行的测试表明,这些高能材料的反应产生了以公里速度(1-3.4 km / s)传播的冲击波前沿,能够引爆高爆炸装药(PETN)。杂化纳米体兼具纳米体和高能炸药的特性,是替代铅基主要炸药的最有前途的候选材料。

著录项

  • 来源
  • 会议地点 Grand Junction(US)
  • 作者单位

    NS3E, UMR 3208 CNRS/ISL/UNISTRA, French-German Research Institute of Saint Louis (ISL), BP 70034, 68301 Saint-Louis Cedex, FRANCE;

    NS3E, UMR 3208 CNRS/ISL/UNISTRA, French-German Research Institute of Saint Louis (ISL), BP 70034, 68301 Saint-Louis Cedex, FRANCE;

    NS3E, UMR 3208 CNRS/ISL/UNISTRA, French-German Research Institute of Saint Louis (ISL), BP 70034, 68301 Saint-Louis Cedex, FRANCE;

    NS3E, UMR 3208 CNRS/ISL/UNISTRA, French-German Research Institute of Saint Louis (ISL), BP 70034, 68301 Saint-Louis Cedex, FRANCE;

    NS3E, UMR 3208 CNRS/ISL/UNISTRA, French-German Research Institute of Saint Louis (ISL), BP 70034, 68301 Saint-Louis Cedex, FRANCE;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号