首页> 外文会议>IMAC-XXI: a conference amp; exposition on structural dynamics >NUMERICAL EVALUATION OF DAMAGE DISTRIBUTION OVER A SLAT TRACK USING FLIGHT TEST DATA.
【24h】

NUMERICAL EVALUATION OF DAMAGE DISTRIBUTION OVER A SLAT TRACK USING FLIGHT TEST DATA.

机译:利用飞行测试数据对滑轨上损伤分布的数值评估。

获取原文
获取原文并翻译 | 示例

摘要

In aerospace industry, safety is a crucial element leadingrnaircraft makers to accurately design critical structuralrncomponents. Most of the aircraft components are subject tornperiodic maintenance consisting of visual inspections aimedrnat assessing structural health of components and workingrnsafety of the whole aircraft. If damage occurs in arncomponent, the visual inspection will allow detecting a crackrnand starting the required maintenance action.rnIn the quest for more advanced methods for damagerntolerance, aerospace industry has introduced the safe-lifernand the fail-safe design approaches. Safe life analysis allowsrnverifying if a structure containing initial damage has sufficientrnsafe crack growth life when subject to the expected loads.rnFail-safe analysis allows verifying that the structure has anrnadequate load path redundancy. If the componentrnundergoing the highest load fails, there exist other loadrnpaths with sufficient strength and fatigue life that can safelyrnresist to the applied loads.rnIn order to perform the safe-life and fail-safe analyses loadrnand stress-spectra must be identified. This is usuallyrnachieved by measuring the structural stress resulting fromrnstatic loads applied to the structure. However, under realrnflight conditions non-proportional forces are continuouslyrngenerated that act on safety critical components and affectrntime dependent local stress tensors at any location of thernsurface of the component.rnIn this work, dynamic measurements are used to numericallyrnevaluate damage distribution at the surface of the slat trackrnof an Airbus A320. A large amount of in-flight data recordedrnduring varying flight conditions is processed to identify thernmost critical load conditions for the component under study.rnTaking into account the material property, a numericalrnsimulation is then performed that allows identifying crackrninitiation locations. In these locations, local stress tensorrnhistories are computed and prepared for furtherrninvestigations of crack propagation.rnThe results obtained show that there is high potential forrndesign optimisation of the slat track, since local stressrnamplitudes are far below the endurance limit of the material.
机译:在航空航天工业中,安全性是飞机制造商准确设计关键结构部件的关键要素。飞机的大多数部件都经过定期维护,包括目视检查,旨在评估部件的结构健康状况和整个飞机的工作安全性。如果在组件中发生损坏,则目视检查将允许检测裂纹并开始所需的维护措施。在寻求更高级的公差容限方法时,航空航天工业引入了安全寿命和故障安全设计方法。安全寿命分析可以验证包含初始损伤的结构在承受预期载荷时是否具有足够的安全裂纹扩展寿命。故障安全分析可以验证结构是否具有足够的载荷路径冗余。如果承受最大载荷的组件发生故障,则存在其他具有足够强度和疲劳寿命的载荷路径,可以安全地抵抗施加的载荷。为了执行安全寿命和故障安全分析,必须确定载荷和应力谱。通常可以通过测量因施加到结构上的静态载荷而产生的结构应力来实现。但是,在实际飞行条件下,会连续产生非比例力,该非比例力作用于安全关键部件,并在部件表面的任何位置影响时间相关的局部应力张量。在这项工作中,动态测量用于数值评估板条表面的损伤分布空客A320。处理在变化的飞行条件期间记录的大量飞行中数据,以识别所研究组件的最关键载荷条件。考虑到材料特性,然后进行数值模拟,以识别裂纹起始位置。在这些位置,计算并准备了局部应力张量历史记录,以供进一步研究裂纹扩展。所获得的结果表明,板条轨道的设计优化潜力很大,因为局部应力幅值远低于材料的承受极限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号