首页> 外文会议>Charging amp; infrastructure symposium 2018 >Influence of Hydrochloric Acid Processing and the Current Collector Material on the Electrochemical Performance of Binder-Free Silicon Anodes in Lithium Ion Batteries
【24h】

Influence of Hydrochloric Acid Processing and the Current Collector Material on the Electrochemical Performance of Binder-Free Silicon Anodes in Lithium Ion Batteries

机译:盐酸处理和集流体材料对锂离子电池中无粘结剂硅阳极电化学性能的影响

获取原文
获取原文并翻译 | 示例

摘要

As lithium ion batteries (LIBs) offer an outstanding combination of high energy and power density, they attract great interest to be applied in electric vehicles (EVs).[l] One approach to increase the driving range of EVs is the enhancement of the gravimetric and volumetric energy density of the LIB by replacement of the commercial graphite anode (theoretical capacity: 372 mAh g-1) by high capacity anode materials like silicon (theoretical capacity: 3579 mAh g-1). However, silicon (Si) anodes suffer from a large capacity fading during cycling, which is mainly related to a huge volume change during lithiation/delithiation (> 300%). Large particle volume changes cause particle pulverization and the damage of the mechanical integrity of the entire electrode (electronic contact losses) and lead to ongoing formation of the solid electrolyte interphase, which results in active lithium losses. [2] Several strategies have been developed to overcome the negative consequences of the large volume changes of Si. The reduction of the particle size is one strategy to improve the mechanical stability of silicon since small particles can better resist mechanical degradation. Although the particle cracking issue can be resolved by the use of nanometer-scale materials, the binder is of strong importance for Si-based negative electrodes to mechanically maintain the electrode integrity. Considerable efforts have been devoted to improve the reversible expansion/shrinking behavior of Si with appropriate binders. The pH-value during electrode fabrication has an important influence on the bond formation between binder and silicon. If a Si composite electrode is processed at a pH-value of 3, the mechanical stability is improved and the electrode expansion is reduced which leads to an improved capacity retention.[3,4] Additionally, the current collector material plays an important role on the formation of the Li15Si4 phase which is related to capacity fading.[5] In this work, we report the processing method (under acidic and neutral conditions) and electrochemical characterization of binder-free Si electrodes using different current collector materials. Furthermore, metal nanoparticles (nickel and copper) were mixed with the active material to increase the contact area between the Si and the current collector metal.
机译:锂离子电池(LIB)提供了高能量和功率密度的出色组合,因此吸引了人们广泛的兴趣,将其应用于电动汽车(l)。[l]增大电动汽车续驶里程的一种方法是提高重量比通过用硅等高容量阳极材料(理论容量:3579 mAh g-1)代替商用石墨阳极(理论容量:372 mAh g-1)来提高LIB的体积和能量密度。但是,硅(Si)阳极在循环过程中会发生大容量衰减,这主要与锂化/去锂化过程中体积的巨大变化(> 300%)有关。较大的颗粒体积变化会导致颗粒粉碎,并破坏整个电极的机械完整性(电子接触损耗),并导致持续形成固体电解质中间相,从而导致活性锂损耗。 [2]已经开发了几种策略来克服Si大量变化所带来的负面影响。减小粒径是提高硅的机械稳定性的一种策略,因为小颗粒可以更好地抵抗机械降解。尽管可以通过使用纳米级材料来解决颗粒破裂的问题,但是粘合剂对于基于Si的负极机械地保持电极完整性至关重要。已经进行了相当大的努力来改善具有适当粘合剂的Si的可逆膨胀/收缩行为。电极制造过程中的pH值对粘合剂与硅之间的键形成有重要影响。如果在pH值为3的条件下处理硅复合电极,则机械稳定性会得到改善,电极的膨胀会减少,从而导致容量保持率得到改善。[3,4]此外,集流体材料在以下方面也起着重要作用: Li15Si4相的形成与容量衰减有关。[5]在这项工作中,我们报告了使用不同集流体材料的无粘结剂Si电极的加工方法(在酸性和中性条件下)和电化学特性。此外,将金属纳米颗粒(镍和铜)与活性材料混合以增加Si与集流体金属之间的接触面积。

著录项

  • 来源
  • 会议地点 Mainz(DE)
  • 作者单位

    University of Munster, MEET Battery Research Center, Corrensstrasse 46, Munster, D-48149 Germany;

    University of Munster, MEET Battery Research Center, Corrensstrasse 46, Munster, D-48149 Germany;

    University of Munster, MEET Battery Research Center, Corrensstrasse 46, Munster, D-48149 Germany,Helmholtz Institute Munster, IEK-12, Forschungszentrum Juelich GmbH, Corrensstrasse 46, Munster, D-48149 Germany;

    University of Munster, MEET Battery Research Center, Corrensstrasse 46, Munster, D-48149 Germany;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号