首页> 外文会议>International Confederation for Thermal Analysis and Calorimetry Congress 2016 >Thermal analysis of metal oxides with ionic-electronic conductivity for thermochemical energy storage
【24h】

Thermal analysis of metal oxides with ionic-electronic conductivity for thermochemical energy storage

机译:具有离子电子导电性的金属氧化物的热分析,用于热化学能存储

获取原文
获取原文并翻译 | 示例

摘要

One of the key approaches to developing a supply of renewable energy is through solar-thermal-to-electrical energy generation known as Concentrating Solar Power (CSP). However, the diurnal and intermittent nature of the solar resource necessitates efficient energy storage solutions if a reliable energy supply is to be expected. By increasing the temperature and energy density of thermal storage, improvements in power cycle efficiency and energy storage cost are possible and can result in increased economic competitiveness. Thermochemical energy storage (TCES) holds promise for enabling this goal. Metal oxides (MOs), with their elegantly simple reduction/re-oxidation (redox) chemistry, approach an ideal medium for TCES in many respects. For instance, the chemistry is typically highly selective, reversible, and the only gas phase species required for the reaction is oxygen. Also, metal oxides are generally robust, stable at high temperatures, and compatible with advanced falling particle receiver concepts. In fact, MO TCES can be envisioned as an augmentation to particle receiver concepts wherein the reduction enthalpy adds to the sensible energy being stored in the particle. We seek to systematically develop, characterize, and demonstrate a robust and innovative energy storage cycle based on novel metal oxides with mixed ionic-electronic conductivity (MIEC) that can be directly integrated with Air Brayton power cycles. MIECs differ from more conventional oxides in that they exhibit a continuum of redox states over a large range of thermodynamic conditions (temperature and oxygen potential) rather than a single and discrete transition. Furthermore, the high atomic-scale conductivity of oxygen and electrons within these materials facilitates rapid reaction kinetics and full utilization of the redox capacity. Finally, MIECs are exceptionally tunable in composition, which allows optimization of the thermodynamics and the cost of the material. MIECS comprised of earth-abundant materials such as calcium and manganese have been developed and characterized. Detailed thermogravimetric analysis (TGA) has been utilized to map out the redox properties of candidate MIECs over a wide range of temperatures and oxygen pressures, allowing calculation of reaction enthalpies via a van't Hoff model. Reaction enthalpies up to 390 kJ kg"1 were realized over conditions of interest and stability was demonstrated for up to 100 cycles. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This work is supported by the U.S. Department of Energy, SunShot Initiative, under Award Number DE-FOA-0000805.
机译:发展可再生能源供应的关键方法之一是通过太阳能热能发电,即聚光太阳能(CSP)。然而,如果期望可靠的能源供应,那么太阳能的日间和间歇性就需要有效的储能解决方案。通过提高蓄热器的温度和能量密度,可以提高功率循环效率和蓄能成本,并可以提高经济竞争力。热化学储能(TCES)有望实现这一目标。金属氧化物(MOs)具有出色的简单还原/再氧化(redox)化学性质,在许多方面都接近TCES的理想介质。例如,化学反应通常是高度选择性的,可逆的,并且反应所需的唯一气相物质是氧气。而且,金属氧化物通常是坚固的,在高温下稳定的,并且与先进的降落粒子接收器概念兼容。实际上,可以将MO TCES设想为粒子接收器概念的增强,其中还原焓增加了存储在粒子中的显能。我们力求系统地开发,表征和演示一种稳健而创新的储能循环,该循环基于可与Air Brayton功率循环直接集成的具有混合离子电导率(MIEC)的新型金属氧化物。 MIEC与更传统的氧化物的不同之处在于,它们在大范围的热力学条件(温度和氧势)下表现出连续的氧化还原状态,而不是单个离散的转变。此外,这些材料中氧和电子的高原子级电导率有助于快速反应动力学和氧化还原容量的充分利用。最后,MIEC的成分可调节性极好,从而可以优化热力学和材料成本。已经开发并鉴定了由富含地球物质的材料(例如钙和锰)组成的MIECS。详细的热重分析(TGA)已被用来绘制候选MIEC在较宽的温度和氧气压力范围内的氧化还原特性,从而可以通过van't Hoff模型计算反应焓。在感兴趣的条件下实现了高达390 kJ kg“ 1的反应焓,并证明了高达100个循环的稳定性。桑迪亚国家实验室是由洛克希德·马丁公司的全资子公司桑迪亚公司管理和运营的多程序实验室,根据合同DE-AC04-94AL85000授予美国能源部国家核安全局(National Nuclear Security Administration),这项工作得到美国能源部SunShot Initiative的支持,授予编号DE-FOA-0000805。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号