首页> 外文会议>International Conference on Adaptive Structures and Technologies; 20051009-12; Paris(FR) >ACTIVE AIRFOIL DESIGN AND FINITE ELEMENT ANALYSIS OF SMART STRUCTURES FOR ROTOR BLADE APPLICATIONS
【24h】

ACTIVE AIRFOIL DESIGN AND FINITE ELEMENT ANALYSIS OF SMART STRUCTURES FOR ROTOR BLADE APPLICATIONS

机译:转子叶片应用智能结构的主动翼型设计和有限元分析

获取原文
获取原文并翻译 | 示例

摘要

Blade Vortex Interaction (BVI) poses a problem in modern helicopter rotor blade design, causing unwanted noise and vibration during flight operation. Previous research solutions have been investigated using smart materials to reduce the effects of BVI by integrating active elements into the rotor blade and inducing an angle of twist of the entire blade to change the blade local angle of attack. The current work seeks a more subtle approach to alleviate BVI effects by inducing shape change of only the rotor blade nose, as opposed to twisting of the entire blade. Shape change is accomplished by the control of integrated Lead Zirconate Titanate (PZT) based Active Fiber Composite (AFC) elements in the nose section of a NACA0012 airfoil. Actuation design is accomplished by starting from an analytical characterization of AFC actuation and extending the model to finite element analysis and development of materials data to be used in ANSYS for structural actuation design purposes. A Finite Element Model (FEM) study on the static deformation capability of AFC actuators under static boundary conditions and linear deformation is presented. The FEM assumes that deformation of the structure occurs due to the applied electric potential and resulting displacement field in the AFC. The strain, stress, electric and displacement fields are presented and validated against analytical results for standard piezoelectric problems. ANSYS was used to investigate the shape deformation ability of an airfoil with active regions.
机译:叶片涡旋相互作用(BVI)在现代直升机旋翼桨叶设计中造成了问题,在飞行操作过程中会引起不必要的噪音和振动。已经通过使用智能材料研究了先前的研究解决方案,该解决方案是通过将有源元件集成到转子叶片中并引起整个叶片的扭转角以改变叶片局部攻角来降低BVI的影响。当前的工作寻求一种更微妙的方法来减轻BVI的影响,方法是仅引起转子叶片前缘的形状变化,而不是整个叶片的扭曲。形状变化是通过控制NACA0012机翼前端部分中基于锆钛酸铅(PZT)的集成化活性纤维复合材料(AFC)元素实现的。通过从AFC驱动的分析特性开始,并将模型扩展到有限元分析和开发要在ANSYS中用于结构驱动设计目的的材料数据,可以完成驱动设计。提出了在静态边界条件和线性变形条件下,AFC执行器静态变形能力的有限元模型(FEM)。 FEM假定由于施加的电势和在AFC中产生的位移场而导致结构变形。给出了应变,应力,电场和位移场,并针对标准压电问题的分析结果进行了验证。 ANSYS用于研究具有活动区域的机翼的形状变形能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号