首页> 外文会议>International Conference on Computational Science and Its Applications(ICCSA 2004) pt.2; 20040514-20040517; Assisi; IT >Molecular Simulation of Reaction and Adsorption in Nanochemical Devices: Increase of Reaction Conversion by Separation of a Product from the Reaction Mixture
【24h】

Molecular Simulation of Reaction and Adsorption in Nanochemical Devices: Increase of Reaction Conversion by Separation of a Product from the Reaction Mixture

机译:纳米化学装置中反应和吸附的分子模拟:通过从反应混合物中分离出产物来提高反应转化率

获取原文
获取原文并翻译 | 示例

摘要

We present a novel simulation tool to study fluid mixtures that are simultaneously chemically reacting and adsorbing within a molecularly porous material. The method is a combination of the Reaction Ensemble Monte Carlo method and the Dual Control Volume Grand Canonical Molecular Dynamics technique. The method, termed the Dual Control Cell Reaction Ensemble Molecular Dynamics (DCC-RxMD) method, allows for the calculation of both equilibrium and non-equilibrium transport properties in porous materials, such as diffusion coefficients, permeability and mass flux. Simulation control cells, which are in direct physical contact with the porous solid, are used to maintain the desired reaction and flow conditions for the system. The simulation setup closely mimics an actual experimental system in which the ther-modynamic and flow parameters are precisely controlled. We present an application of the method to the dry reforming of methane within a nanoscale reactor in the presence of a semipermeable nanomembrane modelling silicalite. We studied the effects of the nanomembrane structure and porosity on the reaction species permeability by considering three different nanomembrane models. We also studied the effects of an imposed pressure gradient across the nanomembrane on the mass flux of the reaction species. Conversion of syngas (H_2/CO) increased significantly in all the nanoscale membrane reactor systems considered. The results of this work demonstrate that the DCC-RxMD method is an attractive computational tool in the design of nanoscale membrane reactors for industrial processes.
机译:我们提出了一种新颖的模拟工具来研究在分子多孔材料中同时发生化学反应和吸附的流体混合物。该方法是反应集合蒙特卡罗方法和双重控制体积大正则分子动力学技术的结合。该方法称为双重控制细胞反应集合分子动力学(DCC-RxMD)方法,可以计算多孔材料中的平衡和非平衡传输性质,例如扩散系数,渗透率和质量通量。与多孔固体直接物理接触的模拟控制单元用于维持系统所需的反应和流动条件。模拟设置紧密模拟实际的实验系统,在该系统中,热力学和流量参数得到精确控制。我们提出了该方法在存在半渗透性纳米膜模拟硅沸石的情况下,在纳米反应器内甲烷的重整中的应用。通过考虑三种不同的纳米膜模型,我们研究了纳米膜结构和孔隙度对反应物种渗透性的影响。我们还研究了跨纳米膜施加的压力梯度对反应物质量通量的影响。在所有考虑的纳米级膜反应器系统中,合成气(H_2 / CO)的转化率均显着提高。这项工作的结果表明,DCC-RxMD方法是用于工业过程的纳米级膜反应器设计的一种有吸引力的计算工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号