首页> 外文会议>International Conference on Fuel Cell Science, Engineering and Technology; 20040614-20040616; Rochester,NY; US >MODELING THE SYSTEM AND COMPONENT PERFORMANCE INTERACTIONS OF A SOFC BASED APU FOR CHANGES IN APPLICATION LOAD: TRANSIENT RESPONSE AND CONTROL STRATEGY
【24h】

MODELING THE SYSTEM AND COMPONENT PERFORMANCE INTERACTIONS OF A SOFC BASED APU FOR CHANGES IN APPLICATION LOAD: TRANSIENT RESPONSE AND CONTROL STRATEGY

机译:基于SOFC的APU的系统和组件性能交互建模,以应对应用程序负载的变化:瞬态响应和控制策略

获取原文
获取原文并翻译 | 示例

摘要

Solid-Oxide-Fuel-Cell (SOFC) stacks respond in seconds to changes in load while the balance of plant subsystem (BOPS) responds in times several orders of magnitude higher. This dichotomy diminishes the reliability and performance of SOFC electrodes with changes in load. In the same manner current and voltage ripples which result from particular power electronic subsystem (PES) topologies and operation produce a negative effect on the SOFC stack subsystem (SS) performance. The difference in transient response among the sub-systems must be approached in a way which makes operation of the entire system not only feasible but ensures that efficiency and power density, fuel utilization, fuel conversion, and system response are optimal at all load conditions. Thus, a need exists for the development of transient component- and system-level models of SOFC based auxiliary power units (APUs), i.e. coupled BOPS, SS. and PES, and the development of methodologies for optimizing subsystem responses and for investigating system-interaction issues. In fact the transient process occurring in a SOFC based APU should be systematically treated during the entire creative process of synthesis, design, and operational control, leading in its most general sense to a dynamic optimization problem. This entails finding an optimal system/component synthesis/design, taking into account on- and off-design operation, which in turn entails finding an optimal control strategy and control profile for each sub-system/component and control variable. Such an optimization minimizes an appropriate objective function while satisfying all system constraints. A preliminary set of chemical, thermal, electrochemical, electrical, and mechanical models based on first principles and validated with experimental data have been developed and implemented using a number of different platforms. These models have been integrated in order to be able to perform component, subsystem, and system analyses as well as develop optimal syntheses/designs and control strategies for transportation and stationary SOFC based APUs. Some pertinent results of these efforts are presented here.
机译:固体氧化物燃料电池(SOFC)堆栈可在几秒钟内响应负载变化,而工厂子系统(BOPS)的平衡响应时间则高出几个数量级。这种二分法会随着负载的变化而降低SOFC电极的可靠性和性能。以相同的方式,由特定的功率电子子系统(PES)拓扑和操作产生的电流和电压纹波会对SOFC堆栈子系统(SS)的性能产生负面影响。子系统之间瞬态响应的差异必须以使整个系统不仅可行的方式运行,而且还要确保效率和功率密度,燃料利用率,燃料转换和系统响应在所有负载条件下均达到最佳。因此,需要开发基于SOFC的辅助功率单元(APU)即耦合的BOPS,SS的瞬态组件级和系统级模型。和PES,以及开发用于优化子系统响应和调查系统交互问题的方法。实际上,应该在合成,设计和操作控制的整个创新过程中系统地处理基于SOFC的APU中发生的瞬态过程,从最一般的意义上讲会导致动态优化问题。这需要考虑到设计上和设计外的操作,找到最佳的系统/组件综合/设计,进而需要为每个子系统/组件和控制变量找到最佳的控制策略和控制配置文件。这种优化在满足所有系统约束的同时,将适当的目标函数减至最小。已基于许多基本平台开发并实施了基于第一性原理并经过实验数据验证的化学,热,电化学,电气和机械模型的初步模型。这些模型已集成在一起,以便能够执行组件,子系统和系统分析,并为基于运输和固定式SOFC的APU开发最佳的综合/设计和控制策略。这些工作的一些相关结果在此处介绍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号