【24h】

THERMAL MODELING OF A PEM FUEL CELL

机译:PEM燃料电池的热建模

获取原文
获取原文并翻译 | 示例

摘要

Mathematical modeling of fuel cells can take place at many different levels of detail, from simplified spreadsheet representations to detailed CFD (computational fluid dynamics) models. All of these levels are utilized within General Motors Corporation Fuel Cell Activities. This paper describes the development and application of a model used for analysis of the thermal aspects of a PEM fuel cell. The model domain is a single cell in a fuel cell stack, which is broken into between ten and two hundred control volumes. Each control volume includes eleven lumps; one each for anode, cathode and coolant streams, three for diffusion media/membrane electrode assembly (DM/MEA), four for the cathode portion of the bipolar plate, and four for the anode portion of the bipolar plate. The resulting simulation has the following features; (1) Unlike most CFD representations which typically contain hundreds of thousands or even millions of elements, the model described here does not solve the equations of motion to determine velocity profiles in the anode, cathode or coolant channels. Rather, the flow rates in the anode and cathode flow fields are specified by the user. Typically, uniform flow profiles are assumed, although maldistributed flows may be specified as well. (2) By using between ten and two hundred control volumes, the model can represent the spatial variations of RH (relative humidity) and temperature, (3) The relatively low computational overhead of the modeling approach described here (as compared to a more detailed CFD approach) facilitates dynamic simulation of the cell, i.e. transient thermal response of the system can be simulated. (4) Heat effects simulated include heat released by electrochemical reaction, convection from the fluid streams to the solid lumps (DM/MEA, cathode and anode plates), and conduction in the bipolar plates. This paper also describes some of the ways the model has been used to analyze thermal aspects of fuel cell operations; (1) Sensitivity of the temperature difference between the DM/MEA and coolant plate thermal conductivity and contact resistance, and (2) Impact of coolant flow field (cross-flow and co-flow) on cathode RH. Other potential applications of this type of model are also outlined, including modeling of the cell during transient operation, and start-up.
机译:从简化的电子表格表示到详细的CFD(计算流体动力学)模型,燃料电池的数学建模可以在许多不同的细节层次上进行。所有这些级别都在通用汽车公司的燃料电池活动中使用。本文介绍了用于分析PEM燃料电池热方面的模型的开发和应用。模型域是燃料电池堆中的单个电池,分为10到200个控制体积。每个控制体积包括十一块;分别用于阳极,阴极和冷却剂流,三个用于扩散介质/膜电极组件(DM / MEA),四个用于双极板的阴极部分,四个用于双极板的阳极部分。生成的仿真具有以下功能; (1)与通常包含成千上万甚至数百万个元素的大多数CFD表示法不同,此处描述的模型不能解决确定阳极,阴极或冷却剂通道中速度分布的运动方程。相反,阳极和阴极流场中的流速由用户指定。通常,假定流量分布均匀,尽管也可以指定流量分布不均。 (2)通过使用十到两百个控制体积,该模型可以表示RH(相对湿度)和温度的空间变化,(3)这里描述的建模方法的计算开销相对较低(与更详细的相比) CFD方法)有助于动态模拟电池,即可以模拟系统的瞬态热响应。 (4)模拟的热效应包括电化学反应释放的热量,从流体流到固体块(DM / MEA,阴极和阳极板)的对流以及双极板中的传导。本文还描述了该模型用于分析燃料电池运行的热方面的一些方法。 (1)DM / MEA与冷却液板的导热系数和接触电阻之间的温差敏感度,以及(2)冷却液流场(错流和同流)对阴极RH的影响。还概述了这种类型的模型的其他潜在应用,包括瞬态操作和启动期间的电池建模。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号