首页> 外文会议>Italian Conference on Chemical and Process Engineering(ICheaP-6) vol.2; 20030608-11; Pisa(IT) >Mathematical and experimental modelling of fluid curtains to mitigate chlorine jets and releases
【24h】

Mathematical and experimental modelling of fluid curtains to mitigate chlorine jets and releases

机译:为减轻氯气喷射和释放而设计的流体帘的数学和实验模型

获取原文
获取原文并翻译 | 示例

摘要

Water curtains are amply adopted in refineries and process plants as a post release mitigation technique. When dealing with flammable materials, water curtains are designed to prevent the possibility of explosion of the flammable cloud both avoiding the cloud reaching the ignition point and diluting the concentration below the LFL. If accidental toxic releases are dealt with, the curtains are designed to reduce the concentration of the substance down to a safety level (e.g. concentration that will cause 1% lethality LC_(01)). The extent of dilution depends mainly on the effectiveness of the mechanism involved: mixing of air entrained with the released material, dispersion enhancement, physical absorption of the gas in the fluid. An effective use of water curtains is however limited to toxic gases characterized by high water solubility, such as hydrogen fluoride (Blewitt et al., 1987; Schatz and Koopman, 1990), hydrogen chloride or ammonia (Molag et al., 2001). If a gas characterized by low water solubility is concerned (e.g. chlorine, phosgene, hydrogen sulphyde), the effect of mitigation can be increased for example by the use of a chemical solution giving a non-reversible reaction with the released substance. Only recently, (Griolet et al., 1995) a model was developed to optimise the reactive curtain design for toxic gas dispersion. In a previous work, (Fabiano et al., 1999) the authors presented a detailed study on the wind tunnel simulation of water curtains with chemical reactions, considering in depth, by means of replicated series of fluid -dynamic measurements, the by-pass flow over the barrier and the different flows of wind between the ground level and the upper positions. Notwithstanding the development of several mathematical models, mainly on water curtains, (Mc Quaid, 1975; De Faveri, et al., 1983) a fundamental and validated model incorporating wind effects and chemical-physical adsorption and suitable to be used as a design tool is not available, thus representing the aim o f this study.
机译:精炼厂和加工厂中广泛采用水幕作为缓解排放的技术。在处理易燃材料时,设计水帘可防止易燃云层爆炸的可能性,既可避免云层到达着火点,又可将浓度稀释到LFL以下。如果处理了意外的毒性释放,则应设计窗帘以将物质的浓度降低到安全水平(例如,会导致1%致死性的浓度LC_(01))。稀释程度主要取决于所涉及机制的有效性:夹带的空气与释放出的物质混合,分散性增强,流体中气体的物理吸收。然而,水帘的有效使用仅限于以高水溶性为特征的有毒气体,例如氟化氢(Blewitt等,1987; Schatz和Koopman,1990),氯化氢或氨(Molag等,2001)。如果考虑到以低水溶性为特征的气体(例如氯气,光气,硫化氢),则可以通过使用化学溶液与释放出的物质进行不可逆反应来增强缓解作用。直到最近,(Griolet等人,1995)才开发了一种模型,以优化有毒气体扩散的反应帘设计。在先前的工作中(Fabiano等,1999),作者通过重复的一系列流体动力学测量,旁路研究了深入研究具有化学反应的水幕的风洞模拟。气流越过障碍物,以及地面和较高位置之间的不同风向。尽管已经开发了几种主要在水幕上的数学模型(Mc Quaid,1975; De Faveri等,1983),但已将风效应和化学物理吸附融为一体的基本且经过验证的模型适合用作设计工具不可用,因此代表了本研究的目的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号