首页> 外文会议>IUTAM Symposium on Multiscale Modelling of Damage and Fracture Processes in Composite Materials; 20050523-27; Dolny(PL) >ANISOTROPIC FAILURE OF THE BIOLOGICAL MULTI-COMPOSITE WOOD: A MICROMECHANICAL APPROACH
【24h】

ANISOTROPIC FAILURE OF THE BIOLOGICAL MULTI-COMPOSITE WOOD: A MICROMECHANICAL APPROACH

机译:生物多元复合材料的各向异性破坏:一种微观力学方法

获取原文
获取原文并翻译 | 示例

摘要

Biological materials are characterized by an astonishing variability and diversity. Their hierarchical organizations are often well suited and seemingly optimized to fulfill specific mechanical functions. Still, once a (hierarchical) composite material has been adopted within a class of living organisms, its fundamental building principles, morphologies, or universal patterns of architectural organization) remain largely unchanged during biological evolution. Hence, entire material classes of biological materials exhibit common (universal) principles of (micro)mechanical design. In the theoretical framework of continuum micromechanics, such a building principle was recently expressed in quantitative terms, allowing for a prognosis of tissue-specific (inhomogeneous and anisotropic) elasticity properties of wood from tissue-specific volume fractions of (amorphous and crystalline) cellulose, hemicellulose, lignin, and water, as well as of lumen and vessel pores, based on universal elastic properties of (amorphous and crystalline) cellulose, hemicellulose, lignin, and water. We here extend these investigations to tissue-specific anisotropic strength properties. Macroscopic material strength is governed by strain peaks in the material microstructure, which can be suitably characterized by quadratic strain averages over material phases, being effective for material phase failure. Macroscopic stress states estimated from local shear failure of lignin agree very well with corresponding strength experiments. This expresses the paramount role of lignin as strength-determining component in wood.
机译:生物材料的特点是惊人的可变性和多样性。它们的层次结构组织通常非常适合,并且似乎经过优化可以满足特定的机械功能。但是,一旦(分层)复合材料被一类活生物体所采用,其基本的建筑原理,形态学或建筑组织的通用模式)在生物进化过程中将基本保持不变。因此,生物材料的所有材料类别都表现出(微)机械设计的共同(通用)原理。在连续微力学的理论框架中,最近以定量的方式表达了这种构造原理,从而可以从(非晶和结晶)纤维素的组织比体积分数预测木材的组织比(非均质和各向异性)弹性特性,半纤维素,木质素和水,以及管腔和血管孔,基于(非晶和结晶)纤维素,半纤维素,木质素和水的通用弹性。我们在这里将这些研究扩展到组织特定的各向异性强度特性。宏观材料强度由材料微观结构中的应变峰控制,该峰可以适当地以材料相上的二次平均应变为特征,对材料相失效有效。由木质素的局部剪切破坏估计的宏观应力状态与相应的强度实验非常吻合。这表达了木质素作为木材中强度确定组分的最重要作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号