首页> 外文会议>Laser-based micro- and nanopackaging and assembly VI >Laser adjusted three-dimensional Li-Mn-O cathode architectures for secondary lithium-ion cells
【24h】

Laser adjusted three-dimensional Li-Mn-O cathode architectures for secondary lithium-ion cells

机译:激光调整的二次锂离子电池三维Li-Mn-O阴极架构

获取原文
获取原文并翻译 | 示例

摘要

Three-dimensional cathode architectures for rechargeable lithium-ion cells can provide better Li-ion diffusion due to larger electrochemical active surface area and therefore, may stabilize the cycling behaviour of an electrochemical cell. This features show great importance when aiming for long-life batteries, e.g. in stationary or portable power devices. In this study, lithium manganese oxide thin films were used as cathode material with the goal to stabilize their cycling behavior and to counter degradation effects which come up within the lithium manganese oxide system. Firstly, appropriate laser ablation parameters were selected in order to achieve defined three-dimensional structures with features sizes down to micro- and sub-micrometer scale by using mask imaging technique. Laser annealing was also applied onto the laser structured material in a second step in order to form an electrochemically active phase. Process development led to a laser annealing strategy for a flexible adjustment of crystallinity and grain size. Laser annealing was realized using a high power diode laser system operating at a wavelength of 940 nm. Information on the surface composition, chemistry and topography as well as studies on the crystalline phase of the material were obtained by using Raman spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy and X-ray diffraction analysis. The electrochemical activity of the laser modified lithium manganese oxide cathodes was explored by cyclic voltammetry measurements and galvanostatic testing by using a lithium anode and standard liquid electrolyte.
机译:由于较大的电化学活性表面积,用于可再充电锂离子电池的三维阴极体系结构可以提供更好的锂离子扩散,因此可以稳定电化学电池的循环行为。当针对长寿命电池(例如电池)时,此功能非常重要。在固定式或便携式电源设备中。在这项研究中,锂锰氧化物薄膜用作阴极材料,目的是稳定其循环行为并应对锂锰氧化物体系中出现的降解效应。首先,通过使用掩模成像技术,选择适当的激光烧蚀参数,以实现特征尺寸低至微米和亚微米级的确定的三维结构。在第二步骤中,也将激光退火施加到激光结构化材料上,以形成电化学活性相。工艺的发展导致了激光退火策略的灵活调整结晶度和晶粒尺寸。使用工作在940 nm波长的高功率二极管激光系统实现了激光退火。通过使用拉曼光谱,X射线光电子能谱,扫描电子显微镜和X射线衍射分析获得有关材料的表面组成,化学和形貌以及有关材料的结晶相的信息。通过使用锂阳极和标准液体电解质的循环伏安法测量和恒电流测试,探索了激光改性锂锰氧化物阴极的电化学活性。

著录项

  • 来源
    《Laser-based micro- and nanopackaging and assembly VI》|2012年|p.82440S.1-82440S.10|共10页
  • 会议地点 San Francisco CA(US)
  • 作者单位

    Institute for Applied Materials - Applied Materials Physics (IAM-AWP), Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe, Germany;

    Institute for Applied Materials - Applied Materials Physics (IAM-AWP), Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe, Germany;

    Institute for Applied Materials - Applied Materials Physics (IAM-AWP), Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe, Germany;

    Institute for Applied Materials - Material Process Technology (IAM-WPT), Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe, Germany;

    ATL Lasertechnik GmbH, Burger Str. 48,42929 Wermelskirchen, Germany;

    Institute for Applied Materials - Applied Materials Physics (IAM-AWP), Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe, Germany;

    Institute for Applied Materials - Applied Materials Physics (IAM-AWP), Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe, Germany;

    Institute for Applied Materials - Applied Materials Physics (IAM-AWP), Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe, Germany,Karlsruhe Nano Micro Facility, H.-von-Helmholtz-Platz 1, 76344 Egg.-Leopoldshafen, Germany;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 激光技术、微波激射技术;
  • 关键词

    laser structuring; laser annealing; 3D architecture; lithium-ion cell; lithium manganese oxide; cathode material;

    机译:激光结构化;激光退火3D架构;锂离子电池锰酸锂;正极材料;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号