首页> 外文会议>Laser-based micro- and nanoprocessing IX >Surface micro-structuring of intercalation cathode materials for lithium-ion batteries - a study of laser-assisted cone formation
【24h】

Surface micro-structuring of intercalation cathode materials for lithium-ion batteries - a study of laser-assisted cone formation

机译:锂离子电池插层正极材料的表面微结构-激光辅助锥形成的研究

获取原文
获取原文并翻译 | 示例

摘要

Strong efforts are currently undertaken in order to further improve the electrochemical performance of high energy lithium-ion batteries containing thick composite electrode materials. The properties of these electrode materials such as active surface area, film thickness, and film porosity strongly impact the cell life-time and cycling stability. A rather new approach is to generate hierarchical architectures into cathode materials by laser direct ablation as well as by laser-assisted formation of self-organized structures. It could be shown that appropriate surface structures can lead to a significant improvement of lithium-ion diffusion kinetics leading to higher specific capacities at high charging and discharging currents. In this paper, the formation of self-organized conical structures in intercalation materials such as LiCoO_2 and LiNi_(1/3)Mn_(1/3)Co_(1/3)O_2 is investigated in detail. For this purpose, the cathode materials are exposed to excimer laser radiation with wavelengths of 248 nm and 193 nm leading to cone structures with outer dimensions in the micrometer range. The process of cone formation is investigated using laser ablation inductively coupled plasma mass spectrometry and laser-induced breakdown spectroscopy (LIBS). Cone formation can be initiated for laser fluences up to 3 J/cm~2 while selective removal of lithium was observed to be one of the key issues for starting the cone formation process. It could be shown that material re-deposition supports the cone-growth process leading to a low loss of active material. Besides the cone formation process, laser-induced chemical surface modification will be analysed by LIBS.
机译:为了进一步改善包含厚的复合电极材料的高能锂离子电池的电化学性能,目前正在做出巨大的努力。这些电极材料的特性,例如有效表面积,薄膜厚度和薄膜孔隙率,会极大地影响电池的使用寿命和循环稳定性。一种相当新的方法是通过激光直接烧蚀以及通过激光辅助形成自组织结构,在阴极材料中生成分层结构。可以证明,适当的表面结构可以导致锂离子扩散动力学的显着改善,从而在高充电和放电电流下导致更高的比容量。本文详细研究了层间材料如LiCoO_2和LiNi_(1/3)Mn_(1/3)Co_(1/3)O_2的自组织锥形结构的形成。为此,将阴极材料暴露在波长为248 nm和193 nm的准分子激光辐射下,从而形成外部尺寸在微米范围内的锥形结构。使用激光烧蚀电感耦合等离子体质谱法和激光诱导击穿光谱法(LIBS)研究了锥的形成过程。对于高达3 J / cm〜2的激光注量,可以开始锥化,而观察到选择性去除锂是开始锥化过程的关键问题之一。可以表明,材料的重新沉积支持了锥状生长过程,从而导致活性材料的损失少。除了锥体形成过程外,LIBS还将分析激光诱导的化学表面改性。

著录项

  • 来源
    《Laser-based micro- and nanoprocessing IX》|2015年|93511E.1-93511E.12|共12页
  • 会议地点 San Francisco CA(US)
  • 作者单位

    Karlsruhe Institute of Technology, IAM-AWP, P.O. Box 3640, 76021 Karlsruhe, Germany,Karlsruhe Nano Micro Facility, H.-von-Helmholtz-Platz 1, 76344 Egg.-Leopoldshafen, Germany;

    Karlsruhe Institute of Technology, IAM-AWP, P.O. Box 3640, 76021 Karlsruhe, Germany,Karlsruhe Nano Micro Facility, H.-von-Helmholtz-Platz 1, 76344 Egg.-Leopoldshafen, Germany;

    Karlsruhe Institute of Technology, IAM-AWP, P.O. Box 3640, 76021 Karlsruhe, Germany;

    Karlsruhe Institute of Technology, IAM-AWP, P.O. Box 3640, 76021 Karlsruhe, Germany,Karlsruhe Nano Micro Facility, H.-von-Helmholtz-Platz 1, 76344 Egg.-Leopoldshafen, Germany;

    Karlsruhe Institute of Technology, IAM-AWP, P.O. Box 3640, 76021 Karlsruhe, Germany;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    lithium-ion battery; cathode material; self-organized structures; micro-anostructures;

    机译:锂离子电池;阴极材料;自组织结构;微观/纳米结构;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号