首页> 外文会议>International symposium on System synthesis >Plasma cathode sustained filamentary glow discharges in atmosphericair
【24h】

Plasma cathode sustained filamentary glow discharges in atmosphericair

机译:大气中的等离子体阴极持续丝状辉光放电空气

获取原文

摘要

Summary form only given, as follows. Glow-to-arc transitions infilamentary glow discharges in atmospheric air can be largely avoided byuse of a plasma cathode, as has been demonstrated in short filamentarydischarges in air. In these experiments a dc-driven microhollow cathodedischarge (MHCD) was used as a plasma cathode to sustain a stable,direct current discharge between the plasma cathode and a thirdpositively biased electrode. We have, using the same concept, extendedthe gap distance (distance between plasma cathode and third electrode)from previously 2 mm to the range from 6 mm to 20 mm and have studiedthe electrical, optical and plasma properties of such long filamentaryglow discharges in atmospheric air. The MHCD is ignited between closelyspaced molybdenum electrodes, separated by a 130 μm thick aluminalayer, with a 130 μm hole through the sample. The filamentarydischarge was ignited at small gap distances, in order to keep theignition voltage at a low level, and then the gap was extended to thedesired distance. In a certain range of current the filamentary glowdischarge (FGD) current was found to be identical to the microhollowcathode discharge current. In this range control of the FGD by the MHCDis possible. From previous measurements of short gap filamentarydischarge the gas temperature was found to be approximately 2000 K], theelectron density was estimated as close to 1013 cm-3. We will report on the results of measurements of these plasmaparameters in long filamentary air discharges, and the electricalparameters, which determine the current range of MHCD control of theFGD. Parallel operation of these controlled filamentary glow dischargesby using individual or distributed ballast might allow the generation oflarge volume, high pressure glows in air
机译:仅给出摘要表格,如下。辉光弧过渡 大气中的丝状辉光放电可以通过以下方式大大避免 如在短丝状中已证明的,使用等离子阴极 排放到空气中。在这些实验中,直流驱动的微空心阴极 放电(MHCD)用作等离子体阴极,以维持稳定, 等离子体阴极和第三阴极之间的直流电放电 正偏压电极。我们使用相同的概念扩展了 间隙距离(等离子阴极与第三电极之间的距离) 从以前的2毫米到6毫米到20毫米的范围,并进行了研究 如此长的丝状纤维的电学,光学和等离子特性 辉光在大气中排放。 MHCD被紧密点燃 间隔开的钼电极,由130μm厚的氧化铝隔开 样品层上有一个130μm的孔。丝状的 在小间隙距离处点燃放电,以保持 点火电压处于较低水平,然后将间隙扩展到 所需的距离。在一定电流范围内,丝状辉光 发现放电(FGD)电流与微空心相同 阴极放电电流。在此范围内,MHCD对烟气脱硫的控制 是可能的。根据以前的短间隙丝状测量 发现气体温度约为2000 K], 电子密度估计接近10 13 cm -3 。我们将报告这些血浆的测量结果 长丝空气排放中的参数,以及电气 参数,这些参数决定了MHCD控制的当前范围 烟气脱硫。这些受控的丝状辉光放电的并行操作 通过使用单个或分布式镇流器可能会产生 大体积,高压气体在空气中发光

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号