首页> 外文会议>International Universities Power Engineering Conference;UPEC 2008 >Using Artificial Neural Network to Estimate Maximum Overvoltage on Cables with Considering Forward and Backward Waves
【24h】

Using Artificial Neural Network to Estimate Maximum Overvoltage on Cables with Considering Forward and Backward Waves

机译:使用人工神经网络在考虑向前和向后波的情况下估计电缆上的最大过电压

获取原文

摘要

Iightning is known to be one of the primary sources of most surges in high keraunic areas. It is well-known fact that surge overvoltage is a significant contribution in cable failures. The other source of surge voltage is due to switching and it is pronounce on extra high voltage power transmission systems. The effect of both lightning and switching surges is weakening the cable insulation. The progressive weakening of such insulation will lead to cable deterioration and eventually its failure. Each surge impulse on the cable will contribute with other factors towards cable insulation strength deterioration and ultimately cable can fail by an overvoltage level below the cable basic impulse level (BIL). The maximum lightning overvoltage for a given cable depends on a large number of parameters. This paper presents the effect of model parameters (e.g., rise time and amplitude of surge, length of cable, resistivity of the core and sheath, tower footing resistance, number of sub conductors in the phase conductor (bundle), effect of surge arrester, length of lead, relative permittivity of the insulator material outside the core, power frequency voltage, stroke location, cable joints, shunt reactors, sheath thickness) on maximum cable voltage. An Artificial Neural Network (ANN) is trained to estimate peak overvoltage generated in presence of back flashover. Levenberg-Marquardt method is used to train the multilayer perceptron neural network. The simulated results presented clearly show that the proposed technique can estimate the maximum overvoltage with good accuracy.
机译:众所周知,收紧是高keroonic地区大多数潮汐的主要来源之一。众所周知的事实是,浪涌过电压是电缆故障的重要原因。浪涌电压的另一个来源是开关引起的,这在超高压输电系统中很明显。雷电和开关浪涌的影响都会削弱电缆的绝缘性。这种绝缘的逐渐减弱将导致电缆变质,并最终导致其故障。电缆上的每次电涌脉冲都会与其他因素一起导致电缆绝缘强度下降,最终电缆会因低于电缆基本脉冲水平(BIL)的过电压而失效。给定电缆的最大雷电过电压取决于大量参数。本文介绍了模型参数的影响(例如,浪涌的上升时间和幅度,电缆的长度,芯线和护套的电阻率,塔基电阻,相导体(束)中子导体的数量,电涌放电器的影响,导线的长度,芯外绝缘材料的相对介电常数,工频电压,行程位置,电缆接头,并联电抗器,护套厚度)取决于最大电缆电压。训练了一个人工神经网络(ANN),以估计在存在反向闪络的情况下产生的峰值过电压。 Levenberg-Marquardt方法用于训练多层感知器神经网络。给出的仿真结果清楚地表明,所提出的技术可以很好地估计最大过电压。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号