首页> 外文会议>AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition >A New Changing-Topology ALE Scheme for Moving Mesh Unsteady Simulations
【24h】

A New Changing-Topology ALE Scheme for Moving Mesh Unsteady Simulations

机译:用于移动网格非稳态仿真的新的拓扑更改ALE方案

获取原文

摘要

Three-dimensional real-life simulations are generally unsteady and involve moving geometries. Industries are currently still very far from performing such simulations on a daily basis, mainly due to their extensive computational cost. Anisotropic metric-based mesh adaptation, which has already proved its usefulness for steady and fixed-mesh unsteady CFD simulations, can certainly solve part of this issue by enhancing both the accuracy and efficiency of CFD simulations. However, before extending these techniques to moving mesh simulations, the fixed-topology constraint imposed by the classical Arbitrary-Lagrangian-Eulerian formulation (ALE) framework has to be released. This paper brings two new ideas. First, it demonstrates numerically that moving three-dimensional complex geometries with large displacements is feasible using only vertex displacements and connectivity changes. This is new and presents several advantages over usual techniques for which the number of vertices varies in time. Notably, it facilitates the handling of data structures on the solver part, thus favorably impacting CPU time. But it also answers the scarcely addressed question of spoiling interpolation errors in moving mesh simulations. The second novelty lies in the description of a new methodology extending well-known ALE schemes to changing-connectivity meshes. Even if for the moment this scheme has only be implemented in two-dimensions, our objective is clearly to use a similar methodology for three-dimensional connectivity changes. Finally, note that the complete description of the extension of multi-scale anisotropic metric-based mesh adaptation unsteady, and especially moving mesh simulations, is given in.
机译:三维现实生活中的模拟通常是不稳定的,并且涉及不断变化的几何形状。目前,工业界仍距离每天执行此类模拟还很遥远,这主要是因为它们的计算成本很高。基于各向异性度量的网格自适应已经证明了其对稳定和固定网格非稳态CFD仿真的有用性,可以通过提高CFD仿真的准确性和效率来解决部分问题。但是,在将这些技术扩展到移动网格模拟之前,必须释放由经典任意拉格朗日欧拉公式(ALE)框架施加的固定拓扑约束。本文带来了两个新的想法。首先,它从数值上证明了仅使用顶点位移和连通性变化,移动具有大位移的三维复杂几何体是可行的。这是新的,并且相对于通常的技术(顶点数量随时间变化)具有一些优势。值得注意的是,它有助于解决求解器部分上的数据结构,从而有利地影响CPU时间。但这也回答了在移动网格模拟中破坏内插误差的几乎未解决的问题。第二个新奇之处在于对一种新方法的描述,该方法将众所周知的ALE方案扩展到了更改连通性的网格。即使目前仅以二维方式实施此方案,我们的目标显然仍是对三维连接变化使用类似的方法。最后,请注意,其中给出了基于多尺度各向异性度量的网格自适应扩展的完整描述,尤其是运动网格仿真的扩展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号