首页> 外文会议>World biomaterials congress >Injectable and degradable Poly(oligoethylene glycol methacrylate)-based hydrogels-synthetic versatility for improved biomaterial design
【24h】

Injectable and degradable Poly(oligoethylene glycol methacrylate)-based hydrogels-synthetic versatility for improved biomaterial design

机译:可注射和可降解的聚(低聚乙二醇甲基丙烯酸酯)基于水凝胶 - 合成通用性,用于改进的生物材料设计

获取原文

摘要

Introduction: Poly(ethylene glycol) (PEG) hydrogels have been demonstrated as effective synthetic matrices for drug delivery and tissue scaffold engineering applications. However, only the chain ends of PEG can be functionalized for crosslinking and/or ligand tethering, which limits chemical versatility for non-invasive biomedical applications. In situ gelling poly(oligoethylene glycol methacrylate) (POEGMA) hydrogels were prepared based on hydrazone bond formation to successfully address these limitations. The physical and biological properties of three POEGMA hydrogels with varying phase transition temperatures (VPTT) bebw (PO_0), close to (PO_(10)) and significantly higher (PO_(100)) than physiological temperature are shown by exploiting the tunability of the lower critical solution temperature (LCST) behaviour of the oligo(PEG) side-chains used. Materials and Methods: Hydrazide (PO_xH_y) and aldehyde (PO_xA_y) functionalized POEGMA precursors were synthesized using free-radical polymerization of oligo(ethylene glycol) methacrylate monomers with varying ethylene oxide chain lengths (n=2 or n=8-9). Reactive group functionality (variation of y, mol% of total monomer residues) and LCST (variation of x, the mol% of n=8-9 and n=2 comonomer used) are selected via copolymerization. Reactive precursors are co-extruded to rapidly form hydrogels in situ. Results and Discussion: The PO_(10) hydrogel showed a clear discontinuous VPTT at ~32-33°C while PO_0 (100 mol% n=2 monomer) and PO_(100) (100 mol% n=8-9 monomer) hydrogels showed phase transitions at ~24°C and > 60°C respectively (Fig. 1 A). The G' of PO_0 was -1 order of magnitude higher than that of PO_(100) (Fig. 1B); similarly, gelation varies significantly from PO_0 (~5 s) to PO_(100)(~20 min) (Fig. 1C). Fig. 1 Thermoresponsive properties of the PO_0. PO_(10)and PO_(100) hydrogels (1A). Mechanical properties of gels (1B). Physical appearance and gelation times at 37°C (1C). BSA (1D) adsorption onto the PO_0, PO_(10) and PO_(100) hydrogels at 37°C as function of the protein concentration in the loading solution. Fig. 2A Fibroblast adhesion after 2 days to a polystyrene control (A1), POEGMA hydrogel (A2) and an RGD-functionalized hydrogel (A3). Fig 2B. Cells recovered following delamination from a PO_0 hydrogel interface, following trypsin treatment (B1) and following thermal treatment at 4°C for 15 minutes (B2). Very low protein adsorption (Fig. 1D) and cell adhesion were observed for PO_(10) and PO_(100) gels; however, grafting a small density of RGD peptide to PO_(100) precursors significantly increased the matrix cell binding capacity (Fig. 2A). Enzyme-free cell delamination from the PO_0 gels upon cooling below the gel transition temperature (Fig 2B). In vivo studies on BALB-c mice show mild inflammatory responses at both the acute and chronic time points for PO_(10) and PO_(100) but evidence of capsule formation for PO_0 (Fig. 3). Fig 3. Histology following subcutaneous injection (acute = 2 days, chronic = 30 days) Conclusions: POEGMA-based gels have highly tunable properties that can readily be matched to a range of tissues (e.g. adipose, muscle, or cartilage) by simple copolymerization. By varying the phase transition temperature and inclusion of RGD, matrices can be designed with low protein adsorption (matching reported PEGylated surfaces) and no cell adhesion, or moderate cell adhesion but minimal non-specific protein adsorption.
机译:介绍:已证明聚(乙二醇)(PEG)水凝胶作为药物递送和组织脚手架工程应用的有效合成基质。然而,只有PEG的链末端可以用于交联和/或配体系束性,这限制了非侵入性生物医学应用的化学多功能性。原位胶凝聚(寡替乙二醇甲基丙烯酸酯)(钼)水凝胶基于腙键形成制备,以成功解决这些限制。具有不同相变温度(VPTT)BEBW(PO_0)的三个痘胶水凝胶的物理性质,接近(PO_(10))和明显高于生理温度(PO_(100)),通过利用可调性而显示低临界溶液温度(LCST)使用寡核苷酸的侧链。材料和方法:使用寡聚醇(乙二醇)甲基丙烯酸酯单体的自由基聚合,合成酰肼(PO_XH_Y)和醛(PO_XA_Y)官能化酚醛原料,其具有不同的环氧乙烷链长(n = 2或n = 8-9)。反应性基团官能度(Y的变化,%(摩尔)总单体的残基的)和LCST(x的变型中,摩尔%N = 8-9且n = 2的共聚单体的使用)通过共聚选择。反应性前体与原位迅速挤出以快速形成水凝胶。结果与讨论:PO_(10)水凝胶在〜32-33°C下显示出透明的不连续VPTT,而PO_0(100mol%n = 2单体)和PO_(100)(100mol%n = 8-9单体)水凝胶在〜24℃和> 60℃下显示相变(图1A)。 PO_0的G'为-1级高于PO_(100)的阶数(图1B);类似地,凝胶化从PO_0(〜5秒)到PO_(100)(〜20分钟)显着变化(图1C)。图1 PO_0的热敏性属性。 PO_(10)和PO_(100)水凝胶(1A)。凝胶的机械性能(1B)。 37°C(1c)的物理外观和凝胶化时间。 BSA(1D)在37℃下吸附到PO_0,PO_(10)和PO_(100)水凝胶中作为蛋白质浓度在装载溶液中的功能。图2A至聚苯乙烯对照(A1),Poegma水凝胶(A2)和RGD官能化水凝胶(A3)后2天后成纤维细胞粘附。图2B。在从PO_0水凝胶界面中浸出后,在胰蛋白酶处理(B1)之后,在4℃下进行热处理15分钟(B2)后,细胞回收。对于PO_(10)和PO_(100)凝胶,观察到非常低的蛋白质吸附(图1D)和细胞粘附性;然而,接枝到Po_(100)前体的小密度RGD肽显着增加了基质细胞结合能力(图2A)。在冷却凝胶过渡温度下,从PO_0凝胶的无酶细胞分层(图2B)。在Vivo对BALB-C小鼠的研究中,PO_(10)和PO_(100)的急性和慢性时间点的急性炎症反应表现出轻度和慢性时间点,但PO_0的胶囊形成的证据(图3)。图3.皮下注射后的组织学(急性= 2天,慢性= 30天)结论:基于肽的凝胶具有高度可调谐的性能,可以通过简单的共聚合容易地与一系列组织(例如脂肪,肌肉或软骨)匹配。通过改变RGD的相变温度和夹杂物,基质可以被设计为具有低蛋白质吸附性(匹配报道PEG化的表面),并且没有细胞粘附,或中度细胞粘附,但最小的非特异性蛋白质吸附。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号