首页> 外文会议>IEEE Photovoltaic Specialists Conference >Insights into Na+ Diffusion in Silicon Modules under Operating Conditions: Measuring Low Concentrations by D-SIMS
【24h】

Insights into Na+ Diffusion in Silicon Modules under Operating Conditions: Measuring Low Concentrations by D-SIMS

机译:在操作条件下硅模块中的Na +扩散在硅模块中的洞察:D-SIMS测量低浓度

获取原文

摘要

Sodium induced shunting under an electric field is a challenging reliability issue in crystalline Si solar modules. THe source of this Potential-Induced Degradation of the Shunting type (PID-s) is well understood [1] and its influence on power loss has been intensively studied based on phenomenological models on cell or module level relating the experimental power-loss to stressing parameters (time, temperature, voltage) [1]. However, little is known about the Na ion migration kinetics, responsible for PID on a microscopic level, and its quantitative relation to the efficiency degradation. In this paper we present our investigations of sodium ion migration in Ethylene-Vinyl Acetate (EVA) and silicon through Dynamic Secondary Ion Mass Spectroscopy (D-SIMS). Each sample was annealed at field relevant temperatures from 60–90 °C to address typical migration mechanisms of common PV installations. Analysis of the SIMS migration profiles revealed a diffusivity constant D0,EVA = 0.09 ± 0.14 cm2/s and an activation energy EA,EVA = 0.85 ± .04 eV for Na in EVA and diffusivities higher than extrapolated literature values in silicon (D0,Si = (3.03 ± 2.42)x10−5 cm2/s, and EA,Si = 0.98 ± 0.02 eV). The new insight will be included in a drift-diffusion based degradation model accounting for the partition coefficient across all relevant interfaces. This model can assist in predicting PID-failure in the field based on the given mudle stack and the diffusion of Na+ through each material. This tool can be used for process optimization as well as material selection significantly reducing the cost and time to validate a technology.
机译:在电场下诱导的钠在电场下是晶体Si太阳能模块的具有挑战性的可靠性问题。这种潜在诱导的分流型(PID-S)降低的来源得到了很好的理解[1],并且基于细胞或模块水平的现象学模型对电池或模块水平的现象学模型进行了强烈研究的影响参数(时间,温度,电压)[1]。然而,关于Na离子迁移动力学知之甚少,负责PID在显微级别上的PID,以及其与效率降解的定量关系。在本文中,我们通过动态二次离子质谱(D-SIMS)向乙烯 - 乙酸乙烯酯(EVA)和硅的钠离子迁移的研究表达。每个样品在60-90°C的现场相关温度下退火,以解决常见光伏装置的典型迁移机制。 SIMS迁移配置文件的分析显示了扩散常数D 0,EVA = 0.09±0.14厘米 2 / s和激活能量e a,EVA EVA中NA的= 0.85±0.04eV,并且硅中的外推文献值高0.85±0.04eV(D. 0,si =(3.03±2.42)X10 -5 厘米 2 / s,e a,si = 0.98±0.02eV)。新的Insight将包含在所有相关接口的分区系数的漂移扩散基于DRADATION模型中。该模型可以帮助基于给定的Mudle堆栈和NA的扩散来预测现场的PID故障 + 通过每种材料。该工具可用于处理优化以及材料选择显着降低验证技术的成本和时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号