首页> 外文会议>IEEE International Conference on Power Electronics and Drive Systems >Optimization of a self-oscillating power converter for resonant switching in a contactless inductive energy transfer system for low voltage onboard supply system in lightweight construction electric vehicles
【24h】

Optimization of a self-oscillating power converter for resonant switching in a contactless inductive energy transfer system for low voltage onboard supply system in lightweight construction electric vehicles

机译:优化自振动功率转换器,用于轻量级施工电动汽车低压砧座供应系统非接触电感输电系统中的谐振电力转换器

获取原文

摘要

In the future, mobility will be dominated by different forms of e-mobility. The related disadvantages such as the limited range could be compensated by automatic systems for inductive charging. With highly automated and intelligent inductive charging systems, every parking and stopping process can be used to recharge the traction batteries without any interaction of the driver. For e-vehicles smaller than the size class of electric passenger vehicles, as here for instance an electric go-kart, generally low voltage batteries (instead of high voltage batteries) are used. Hence, different standards are required for charging systems for these low voltage batteries, as for example a lower voltage drop on the secondary side and a simple technical implementation. One possible approach is the use of a high-power oscillator on the primary side in combination with a double-sided parallel compensation. A system like this, just due to circuit state, safe operates by principle in terms of open circuit and short circuit stability. If the windings are taken away from one another, the power transfer performance decreases in proportion to the coupling factor down to zero, only because of the circuit state. Therefore, monitoring system is not necessary. In this paper, the optimal design of the parallel compensated charging system for a charging power of 1 kW with a 60 V traction battery is presented, as well as the optimization of the high-power oscillator for high efficiency and the avoidance of EMI-relevant switching interference.
机译:在未来,移动性将由不同形式的电子移动性主导。可以通过用于电感充电的自动系统来补偿诸如有限范围的相关缺点。通过高度自动化和智能的电感充电系统,每个停车和停止过程可用于在没有驾驶员的任何相互作用的情况下为牵引电池充电。对于小于电乘用车的大小等级的电子车辆,如图1所示,例如,使用电动GO-KART,通常使用低压电池(而不是高压电池)。因此,对于这些低压电池的充电系统需要不同的标准,例如次级侧的较低电压降和简单的技术实现。一种可能的方法是在初级侧使用高功率振荡器与双面平行补偿结合使用。这样的系统,仅仅是由于电路状态,安全通过原理在开路和短路稳定性方面操作。如果绕组彼此被避开,则电力传递性能与耦合因子的比例降低至零,仅因电路状态而变为零。因此,不需要监控系统。在本文中,提出了一种具有60V牵引电池的1kW充电功率的并联补偿充电系统的最佳设计,以及高功率振荡器的优化,高效率和避免EMI相关切换干扰。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号