首页> 外文会议>International astronautical congress >OPTIMAL LOW-THRUST DEORBITING OF PASSIVELY STABILIZED LEO SATELLITES
【24h】

OPTIMAL LOW-THRUST DEORBITING OF PASSIVELY STABILIZED LEO SATELLITES

机译:被动稳定的LEO卫星的最佳低推力脱轨

获取原文

摘要

Debris mitigation guidelines recommend all artificial satellites to be removed from orbit upon completing a mission. The generally accepted 25-year lifetime requirement is often a challenge for small satellites with a simplified attitude and orbit control system unless the aerodynamic drag mechanism is sufficient enough for quick spacecraft disposal. Of specific interest is the deorbiting problem for the densely populated low Earth orbit altitudes of 800-1200 km. In this case, a thruster or some drag enhancing actuator is needed. The purpose of the present paper is to investigate the feasibility of designing a low-thrust deorbit control for passively stabilized satellites. Most passive stabilization techniques allow only one spacecraft axis to be stabilized. Therefore, one can install at most two opposite directed thrusters aligned with the stabilized axis: the orientation of any other spacecraft axis is likely to be poorly identifiable, which is unacceptable for a continuous low-thrust orbit control. As a result, the optimal control problem can be formulated in the following way: to design the minimum fuel thrust magnitude control ensuring the desirable change of the satellite mean orbital radius. What concerns the thrust direction, it is exogenously determined at any instant of time by the orientation of the stabilized axis. For spin-stabilized spacecraft, the stabilized axis is almost fixed in absolute space (to be exact, a slow precession occurs), while in the case of passive magnetic stabilization, the thrust vector is aligned (within 10-15 degrees of pointing accuracy) with the direction of the local geomagnetic field. Both these passive stabilization methods are considered. The optimal control problem is shown to be reduced to the nonlinear programming problem by simply averaging the Gaussian equations of orbital motion and applying the two-time-scale optimization approach. The numerical results obtained indicate the possibility of deorbiting passively stabilized LEO satellites in a timely and efficient manner.
机译:减少碎片的准则建议在完成任务后将所有人造卫星从轨道上移开。对于具有简化的姿态和轨道控制系统的小型卫星来说,通常公认的25年寿命要求通常是一个挑战,除非气动阻力机制足以使航天器快速处置。特别引起关注的是人口稠密的低地球轨道高度800-1200 km的去轨问题。在这种情况下,需要一个推进器或一些增强阻力的致动器。本文的目的是研究为被动稳定卫星设计低推力脱轨控制的可行性。大多数被动稳定技术仅允许稳定一个航天器轴。因此,一个人最多可以安装两个与稳定轴对准的相对方向的推进器:任何其他航天器轴的方向都很难识别,这对于连续的低推力轨道控制是不可接受的。结果,可以通过以下方式提出最优控制问题:设计最小燃料推力幅度控制,以确保卫星平均轨道半径的理想变化。关于推力方向,它可以在任何时间通过稳定轴的方向外生确定。对于自旋稳定的航天器,稳定的轴几乎固定在绝对空间中(确切地说,发生缓慢的进动),而在被动磁稳定的情况下,推力矢量是对齐的(在10-15度的指向精度范围内)与当地地磁场的方向有关。考虑了这两种被动稳定方法。通过简单地对轨道运动的高斯方程求平均并应用两次尺度优化方法,可以将最优控制问题简化为非线性规划问题。获得的数值结果表明,有可能及时有效地对被动稳定的LEO卫星进行离轨。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号