首页> 外文会议>International astronautical congress >KINETIC STUDIES ON A SOLAR WIND SHIELD BASED ON PLASMA INFLATION OF MAGNETIC FIELD
【24h】

KINETIC STUDIES ON A SOLAR WIND SHIELD BASED ON PLASMA INFLATION OF MAGNETIC FIELD

机译:基于磁场等离子辐射的太阳能风屏运动学研究

获取原文

摘要

Particle radiation from the Sun is one of the main obstacles to safe interplanetary human missions. Since the early 60s, various protection methods have been proposed to this purpose. One of the most attractive concepts involves the creation of an artificial magnetosphere around the spacecraft, similar to what occurs naturally around the Earth. In principle, this could be done by using a magnet placed on the spacecraft in order to produce the magnetic field necessary to the deflection of solar wind particles; however, a very large magnetic dipole moment is required to create an artificial magnetosphere strong enough to shield the spacecraft, making this concept unpractical. In order to keep the onboard magnetic moment to feasible values, one could inflate the magnetic bubble by injecting an artificial plasma from the spacecraft, freezing the magnetic field lines so that they are effectively carried further away with the flow, thus enlarging the size of the magnetosphere. Feasibility of such plasma shield was analyzed by our group using a simple analytical model (Marcuccio, S., Capuano, E., "Preliminary Assessment of a Solar Wind Shield Based on a Plasma-Inflated Artificial Magnetosphere", IAC-11.B3.7.4). In this paper we present a refinement of the previous preliminary assessment, based on the use of a kinetic numerical model of the solar wind proton trajectories in the magnetized plasma bubble. In particular, the model allows for evaluation of the fraction of incoming solar protons that actually manages to hit a pre-defined "safe" region around the space vehicle. In the close vicinity of the spacecraft to protect, the injected plasma can be restricted to selected regions of space, thanks to the focusing capability of dedicated plasma sources (such as Hall effect or gridded ion thrusters), so that the magnetic field enhancement effect is tailored to a specific shape. The use of multiple magnets and multiple plasma sources allows for further refinement of the shielding effect. The simulation results suggest that, for realistic values of magnetic moment and injected plasma density, energy and angular distribution, the number of solar wind particles that penetrate the protected zone can be reduced to less than 2% with respect to the pure dipole case, even using as little as two coils with reasonable values of magnetic moment. We present an outline configuration scheme for a spacecraft shielding system based on our model and discuss the viability of the concept for near-to-medium term space missions.
机译:来自太阳的粒子辐射是安全执行行星际人类任务的主要障碍之一。自60年代初以来,已为此目的提出了各种保护方法。最具吸引力的概念之一涉及在航天器周围创建一个人造磁层,类似于在地球周围自然发生的情况。原则上,这可以通过使用放置在航天器上的磁铁来完成,以便产生偏转太阳风粒子所需的磁场;但是,要创建一个强度足以屏蔽航天器的人造磁层,需要非常大的磁偶极矩,因此这一概念不切实际。为了将机载磁矩保持在可行的值,可以通过从航天器中注入一种人造等离子体来膨胀磁泡,冻结磁场线,以便有效地将其随气流带走,从而扩大了磁场的大小。磁层。我们小组使用简单的分析模型(Marcuccio,S.,Capuano,E.,“基于等离子膨胀人工磁层的太阳风罩的初步评估”,IAC-11.B3)分析了此类等离子罩的可行性。 7.4)。在本文中,我们基于磁化等离子体气泡中太阳风质子轨迹的动力学数值模型的使用,对先前的初步评估进行了改进。特别地,该模型允许评估实际上设法撞击航天器周围的预定“安全”区域的入射太阳能质子的比例。在要保护的航天器附近,由于专用等离子体源(如霍尔效应或栅状离子推进器)的聚焦能力,可以将注入的等离子体限制在选定的空间区域,从而增强磁场的作用。为特定形状量身定做。使用多个磁体和多个等离子体源可以进一步改善屏蔽效果。仿真结果表明,对于实际的磁矩值和注入的等离子体密度,能量和角度分布,相对于纯偶极子情况,穿透保护区的太阳风粒子的数量可以减少到不到2%。仅使用两个具有合理磁矩值的线圈。我们基于我们的模型提出了航天器屏蔽系统的轮廓配置方案,并讨论了中短期空间飞行任务概念的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号